Advertisement

Hydrodynamics and hydroacoustic mapping of a benthic seafloor in a coarse grain habitat of the German Bight

  • A. BartholomäEmail author
  • R. M. Capperucci
  • L. Becker
  • S. I. I. Coers
  • C. N. Battershill
Original
  • 57 Downloads

Abstract

Coarse-grained hard substrate areas with grain sizes up to very coarse boulder (> 2 m) are very rare in the German North Sea. The “Helgoländer Steingrund” is one of such highly biodiverse areas: it is characterized by a half-moon-shaped hard substrate ridge, which subdivides the site into a more exposed (westerly) and a less exposed (easterly) flank, characterized by a mixture of sand and gravel deposits. Sonar systems, underwater videos, and bottom samples were used for mapping and classifying the abiotic and biotic components in such very patchy and coarse-grained habitat. Three main seabed types (sand, gravel, and hard substrate) were identified, based on acoustic backscatter data. The additional information coming from underwater videos and sediment bottom sample analysis allowed the description of six different seabed types, which included both the abiotic (sediments, morphology, etc.) and biotic components. The flanks of the ridge and their transition to the surrounding soft-ground areas were characterized by a distinct dominance of the bryozoa F. foliacea and A. diaphanum on the western and on the eastern side, respectively. Morphology and hydrodynamics are likely responsible for such zonation. This is proved by the outcomes of the Acoustic Doppler Current Profiler data, which showed the general flow pattern across the ridge and even resolved the local variability of current pattern, dependent on the tidal stage and bottom relief.

Notes

Acknowledgments

This study is financed by the German Research Foundation (DFG) and is part of the INTERCOAST project, which is a collaboration of the University of Bremen, the Senckenberg Institute in Wilhelmshaven, and the University of Waikato.

The authors would like to thank the crew of the RV Senckenberg for the support on the vessel.

Many thanks go to the Federal Maritime and Hydrographic Agency (BSH) Hamburg which provided the (MBES) multibeam data for the bathymetry.

The authors are grateful to Astrid Raschke for the grain-size analysis, to Maik Wilsenack for the technical support, and to our student assistant Vanessa Köhler.

The data reported in this paper will be archived in Pangaea (www.pangaea.de).

References

  1. Anderson JT, Gregory RS, Collins WT (2002) Acoustic classification of marine habitats in coastal Newfoundland. ICES J Mar Sci 59:156–167CrossRefGoogle Scholar
  2. Arendartchuk F, Prado MFV, Bonetti J (2017) Classification of geomorphological in Pântano do Sul Bay (SC) from side-scan sonar images. 2017 IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics)Google Scholar
  3. Bartholomä A (2006) Acoustic bottom detection and seabed classification in the German Bight. Geo-Mar Lett 26(3):177–184.  https://doi.org/10.1007/s00367-006-0030-6 CrossRefGoogle Scholar
  4. Bartholomä A, Holler P, Schrottke K, Kubicki A (2011) Acoustic habitat mapping in the German Wadden Sea - comparison of hydro-acoustic devices. J Coast Res Spec Issue 64:1–5Google Scholar
  5. BFN (Federal Agency for Nature Conservation) (2018) Die Meeresschutzgebiete in der deutschen ausschließlichen Wirtschaftszone der Nordsee - Beschreibung und Zustandsbewertung, (2. überarb. Auflage). BfN-Report, 477, 486 pGoogle Scholar
  6. Brezina J (1979) Particle size and settling rate distributions of sand-sized materials. PARTEC - 2nd European Symposium on Particle Characterization. Nürnberg, 1-47Google Scholar
  7. Callies U, Gaslikova L, Kapitza H, Scharfe M (2017) German Bight residual current variability on a daily basis: principal components of multi-decadal barotropic simulations. Geo-Mar Lett 37(2):151–162.  https://doi.org/10.1007/s00367-016-0466-2 CrossRefGoogle Scholar
  8. Collier JS, Brown CJ (2005) Correlation of sidescan backscatter with grain size distribution of seabed sediments. Mar Geol 214:431–449CrossRefGoogle Scholar
  9. de Kluijver MJ (1991) Sublittoral hard substrate communities off Helgoland. Helgoländer Meeresun 45:317–344CrossRefGoogle Scholar
  10. Dederer G, Boos K, Kanstinger P, Krone R, Schneider C, Beher J, Kuhlenkamp R, Kind B (2015) Tauchuntersuchung des “Steingrund” bei Helgoland (FFH DE 1714 - 391) und Konzeptentwicklung eines Tauch Monitorings für den FFH Lebensraumtyp Riff. Final report, 74 pGoogle Scholar
  11. Dyrynda P (1994) Hydrodynamic gradients and bryozoan distributions within an estuarine basin (Poole Harbour,UK). Olsen & Olsen, FredensborgGoogle Scholar
  12. Ellingsen KE, Gray JS, Bjørnbom E (2002) Acoustic classification of seabed habitats using the QTC VIEW system. J Mar Sci 59(4):825–835Google Scholar
  13. Feldens P, Schulze I, Papenmeier S, Schönke M, Schneider von Deimling J (2018) Improved interpretation of marine sedimentary environments using multi-frequency multibeam backscatter data. GeosciencesGoogle Scholar
  14. Folk RL (1954) The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J Geol 62(4):344–359CrossRefGoogle Scholar
  15. Freitas R, Silva S, Quintino V, Rodrigues AM, Rhynas KP, Collins WT (2003) Acoustic seabed classification of marine habitats: studies in the western coastal-shelf area of Portugal. J Mar Sci 60:599–608Google Scholar
  16. Freitas RF, Ricardo F, Pereira L, Sampaio S, Carvalho M, Gaspar V, Quintino V, Rodrigues AM (2011) Benthic habitat mapping: concerns using a combined approach (acoustic, sediment and biological data). Estuar Coast Shelf Sci 92:598–606CrossRefGoogle Scholar
  17. Greene A, Rahman AF, Kline R, Rahman MS (2018) Side scan sonar: a cost-efficient alternative method for measuring seagrass cover in shallow environments. Estuar Coast Shelf Sci 207:250–258CrossRefGoogle Scholar
  18. Haralick RM, Shanmugam S, Dinstein S (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–620CrossRefGoogle Scholar
  19. Hass C, Mielck F, Fiorentino D, Papenmeier S, Holler P, Bartholomä A (2017) Seafloor monitoring west of Helgoland (German Bight, North Sea) using the acoustic ground discrimination system RoxAnn. Geo-Mar Lett 37:125–136.  https://doi.org/10.1007/s00367-016-0483-1 CrossRefGoogle Scholar
  20. Holler P, Markert E, Bartholomä A, Capperucci R, Hass CH, Kröncke I, Mielk F, Reimers CH (2017) Tools to evaluate seafloor integrity: comparison of multi-device acoustic seafloor classifications for benthic macrofauna-driven patterns in the German Bight, southern North Sea. Geo-Mar Lett 37(2):93–109CrossRefGoogle Scholar
  21. Kühne S, Rachor S (1996) The macrofauna of a stony sand area in the German Bight (North Sea). Helgoländer Meeresun 50(4):433–452CrossRefGoogle Scholar
  22. Kwoll E, Becker M, Winter C (2014) With or against the tide: the influence of bed form asymmetry on the formation of macroturbulence and suspended sediment patterns. Water Resour Res 50(10):7800–7815.  https://doi.org/10.1002/2013WR014292 CrossRefGoogle Scholar
  23. Lambeck K, Purcell A, Funder S, KjæR KH, Larsen E, Moller PER (2006) Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling. Boreas 35(3):539–575CrossRefGoogle Scholar
  24. Lurton X (2002) An introduction to underwater acoustics. Principle and applications, Springer, 347 ppGoogle Scholar
  25. Michaelis R, Hass CH, Mielck F, Papenmeier S, Sander L, Ebbe B, Gutow L, Wiltshire KH (2019) Hard-substrate habitats in the German Bight (South-Eastern North Sea) observed using drift videos. J Sea Res 144:78–84.  https://doi.org/10.1016/j.seares.2018.11.009 CrossRefGoogle Scholar
  26. Mielck F, Bartsch I, Hass HC, Wölfl AC, Bürk D, Betzler C (2014) Predicting spatial kelp abundance in shallow coastal waters using the acoustic ground discrimination system RoxAnn. Estuar Coast Shelf Sci 143:1–11CrossRefGoogle Scholar
  27. Migné A, Davoult D (2002) Experimental nutrition in the soft coral Alcyonium digitatum (Cnidaria: Octocorallia): removal rate of phytoplankton and zooplankton. Cah Biol Mar 43(1):9–16Google Scholar
  28. Papermeier S, Hass CH (2018) Detection of stones in marine habitats combining simultaneous hydroacoustic surveys. Geosciences 8(8):279.  https://doi.org/10.3390/geosciences8080279 CrossRefGoogle Scholar
  29. Parsons DR, Jackson PR, Czuba JA, Engel FL, Rhoads BL, Oberg KA, Best JL, Mueller DS, Johnson KK, Riley JD (2013) Velocity mapping toolbox (VMT): a processing and visualization suite for moving-vessel ADCP measurements. Earth Surf Process Landf 38:1244–1260CrossRefGoogle Scholar
  30. Porter JS, Hayward PJ, Spencer Jones ME (2001) The identity of Alcyonidium diaphanum (Bryozoa: Ctenostomatida). J Mar Biol Assoc 81(6):1001–1008.  https://doi.org/10.1017/S0025315401004970 CrossRefGoogle Scholar
  31. Pratje O (1951) Die Deutung der Steingründe in der Nordsee als Endmoränen. Deutsche Hydrographische Zeitschrift 4(3):106–114.  https://doi.org/10.1007/bf02027271 CrossRefGoogle Scholar
  32. Preston JM, Collins WT (2000) Bottom classification in very shallow water by high-speed data acquisition. Oceans Conference Record (IEEE), 2, 1277, 1282 vol.2.  https://doi.org/10.1109/OCEANS.2000.881778
  33. Quester Tangent (2004) QTC IMPACT user manualGoogle Scholar
  34. Quintino V, Freitas R, Mamede R, Ricardo F, Rodrigues AM, Mota J, Perez-Ruzafa A, Marcos C (2010) Remote sensing of underwater vegetation using single-beam acoustics. ICES J Mar Sci 67:594–605.  https://doi.org/10.1093/icesjms/fsp251 CrossRefGoogle Scholar
  35. Rachor E & Nehmer P (2003) Erfassung und Bewertung ökologisch wertvoller Lebensräume in der Nordsee-Abschlussbericht für das F + E-Vorhaben FKZ 899 85 310. Report, Bundesamt für Naturschutz, 175 ppGoogle Scholar
  36. Schulz H (1983) Der Steingrund bei Helgoland - Restsedimente einer saaleeiszeitlichen Endmoräne. Meyniana 35:43–53Google Scholar
  37. Schwarzer K, Ricklefs K, Bartholomä A, Zeiler M (2008) Geological development of the North Sea and the Baltic Sea. Die Küste 74:1–17Google Scholar
  38. Staneva J, Stanev E, Wolff J-O, Badewien T, Reuter R, Flemming BW, Bartholomä A, Bolding K (2009) Hydrodynamics and sediment dynamics in the German Bight: a focus on observations and numerical modelling. Cont Shelf Res 29(1):302–319CrossRefGoogle Scholar
  39. Stocks T (1955) Deutsche-Hydrographische Zeitschrift 8: 112.  https://doi.org/10.1007/BF02019797 CrossRefGoogle Scholar
  40. Sündermann J, Pohlmann T (2011) A brief analysis of North Sea physics. Oceanologia 53(3):663–689CrossRefGoogle Scholar
  41. Terry JP, Goff J (2014) Megaclasts: proposed revised nomenclature at the coarse end of the Udden-Wentworth grain-size scale for sedimentary particle. J Sediment Res 84:192–197CrossRefGoogle Scholar
  42. Zeiler M, Schwarzer K, Bartholomä A, Ricklefs K (2008) Seabed morphology and sediment dynamics. Die Küste 74:31–44Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Senckenberg am MeerWilhelmshavenGermany
  2. 2.Department of GeosciencesUniversity of BremenBremenGermany
  3. 3.Environmental Research Institute, Faculty of Science & EngineeringUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations