Sedimentary records of Marine Isotopic Stage 3 (MIS 3) in southern Brazil

  • Sergio R. DillenburgEmail author
  • Eduardo G. Barboza
  • Maria Luiza C. C. Rosa
  • Felipe Caron
  • Rodrigo Cancelli
  • Cristiane B. Santos-Fischer
  • Renato P. Lopes
  • Matias do Nascimento Ritter


In this paper, a reinterpretation of the older 14C ages of the Pleistocene substrate of the Holocene barrier-lagoon system of three coastal localities in southern Brazil is presented (Hermenegildo, Cassino, and Curumim). Sedimentological, geochronological, palynological, and diatom analyses of a sedimentary deposit formed in an estuarine/shallow marine environment are examined. This sedimentary deposit is presently found between 22 and 25 m depth below sea level in the Pinheira coastal plain. Results from all studied sites indicate that the deposit was formed under a former sea level of Marine Isotopic Stage 3 (MIS 3) that may have oscillated in the study region between 5 and 23 m depth below present sea level, from 36.2 to 47.7 ka. These results are reinforced by studies of nearby sites, including southeast Brazil. The Pleistocene substrate of the Holocene lagoonal-barrier system, at depths lower than 5 m below sea level, seems to correspond to sedimentary deposits of the Pleistocene barrier formed during MIS 5, while at depths greater than 5 m below sea level, they might correspond to sedimentary deposits that were formed during the relative high sea levels of MIS 3.



Sergio Dillenburg and Eduardo Barboza thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the provision of their research fellowships. Cristiane Fischer, Rodrigo Cancelli and Renato Lopes thank to CAPES, CNPq and the Programa de Pós-Graduação em Geociências (PPGGEO) for their Postdoctoral positions (Cristiane: PNPD-CAPES 01/2008, Rodrigo: CNPq grant no. 405520/2017-4 and Renato: CNPq grant no. 150153/2014-7). We are also grateful to Andrew Green for his constructive comments, and to an anonymous reviewer and the editor of this journal for their help to improve the quality of the original manuscript.


  1. Angulo RJ, Souza MC, Assine ML, Pessenda LCR, Disaró ST (2008) Chronostratigraphy and radiocarbon age inversion in the Holocene regressive barrier of Paraná, southern Brazil. Mar Geol 252:111–119. CrossRefGoogle Scholar
  2. Capítoli RR, Bemvenuti C (2004) Distribuição batimétrica e variações de diversidade dos macroinvertebrados bentônicos da plataforma continental e talude superior no extremo sul do Brasil. Atlântica 26:27–43Google Scholar
  3. Chappel J, Shackleton NJ (1986) Oxygen isotopes and sea-level. Nature 324:137–140. CrossRefGoogle Scholar
  4. Cohen MCL, França MC, Rossetti DF, Pessenda LCR, Giannini PCF, Lorente FL, Buso Junior AA, Castro D, Macario K (2014) Landscape evolution during the late Quaternary at the Doce River mouth, Espirito Santo state, southeastern Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 415:48–58. CrossRefGoogle Scholar
  5. Cooper JAG, Meireles RP, Green AN, Klein AHF, Toldo EE (2018) Late Quaternary stratigraphic evolution of the inner continental shelf in response to sea-level change, Santa Catarina, Brazil. Mar Geol 397:1–14. CrossRefGoogle Scholar
  6. Dillenburg SR, Barboza EG (2014) The strike-fed Sandy coast of southern Brazil. In: martini IP, Wanless HR (eds) sedimentary coastal zones from high to low latitudes: similarities and differences. Geol Soc Lond Spec Publ 388:333–352. CrossRefGoogle Scholar
  7. Dillenburg SR, Barboza EG, Tomazell LJ, Hesp PA, Clerot LCP, Zouain RNA (2009) The Holocene coastal barriers of Rio Grande do Sul. In: Dillenburg SR, Hesp PA (eds) geology and geomorphology of Holocene coastal barriers of Brazil. Lect Notes Earth Sci 107:53–91. CrossRefGoogle Scholar
  8. Dillenburg SR, Barboza EG, Hesp PA, Rosa MLCC, Angulo RJ, Souza MC, Gianinni PCF, Sawakuchi AO (2014) Discussion: “evidence for a transgressive barrier within a regressive strandplain system: implications for complex response to environmental change” by Hein, et al., 2013. Sedimentology 60: 469-502. A transgressive barrier at Pinheira, southern Brazil around 3 ka? Sedimentology 61:2205–2212. CrossRefGoogle Scholar
  9. Dillenburg SR, Barboza EG, Rosa MLCC, Caron F, Sawakuchi A (2017) The complex prograded Cassino barrier in southern Brazil: geological and morphological evolution and records of climatic, oceanographic and sea-level changes in the last 7-6 ka. Mar Geol 390:106–119. CrossRefGoogle Scholar
  10. Faegri K, Iversen L (1989) Textbook of pollen analysis, vol 328. John Wiley, New YorkGoogle Scholar
  11. González K, Dupont LM, Mertens K, Wefer G (2008) Reconstructing marine productivity of the Cariaco Basin during marine isotope stages 3 and 4 using organic-walled dinoflagellate cysts. Paleoceanography 23:1–16. CrossRefGoogle Scholar
  12. Hein CJ, FitzGerald DM, Cleary WJ, Albernaz MB, Menezes JT, Klein AHF (2013) Evidence for a transgressive barrier within a regressive strandplain system: implications for complex coastal response to environmental change. Sedimentology 60:469–502. CrossRefGoogle Scholar
  13. Hesp PA, Giannini PCF, Martinho CT, Miot da Silva G, Asp NE (2009) The Holocene barrier Systems of the Santa Catarina Coast, southern Brazil. In: Dillenburg SR and Hesp, PA (eds) geology and geomorphology of Holocene coastal barriers of Brazil. Lect Notes Earth Sci 107:53–91. CrossRefGoogle Scholar
  14. Heusser CJ, Heusser LE (2006) Submillennial palynology and palaeoecology of the last glaciation at Taiquemó (50,000 cal year, MIS 2–4) in southern Chile. Quat Sci Rev 25:446–454. CrossRefGoogle Scholar
  15. Howe JA, Harland R, Pudsey J (2002) Dinoflagellate cyst evidence for quaternary palaeoceanographic change in the northern Scotia Sea, South Atlantic Ocean. Mar Geol 191:55–69. CrossRefGoogle Scholar
  16. Inman DL, Nordstron CE (1971) On the tectonic and morphologic classification of coasts. J Geol 79:1–21CrossRefGoogle Scholar
  17. Isla FI, Schnack EJ (2016) Sea level changes during marine isotopic stage 3 (MIS 3) in Argentina. In: Gasparini GM, Rabassa J, Deschamps C, Tonni EP (eds) Marine Isotope Stage 3 in Southern South America, 60 ka B.P. – 30 ka B.P. Springer Earth System Sciences, p 147–154.
  18. Jara-Muñoz J, Melnick D (2015) Unraveling Sea-level variations and tectonic uplift in wave-built marine terraces, Santa María Island, Chile. Quat Res 85:216–228. CrossRefGoogle Scholar
  19. Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686. CrossRefGoogle Scholar
  20. Lambeck K, Esat TM, Potter EK (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206. CrossRefGoogle Scholar
  21. Lima LG, Dillenburg SR, Medeanic S, Barboza EG, Rosa MLCC, Tomazelli LJ, Dehnhardt BA, Caron F (2013) Sea-level rise and sediment budget controlling the evolution of a transgressive barrier in southern Brazil. J S Am Earth Sci 42:27–38. CrossRefGoogle Scholar
  22. Linsley BK (1986) Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150,000 years. Nature 380:234–237. CrossRefGoogle Scholar
  23. Mahiques MM, Sousa SHM, Burone L, Nagai RH, Silveira ICA, Figueira RCL, Soutelino RG, Ponsoni L, Klein DA (2011) Radiocarbon geochronology of the sediments of the São Paulo bight (southern Brazilian upper margin). An Acad Bras Cienc 83:817–834CrossRefGoogle Scholar
  24. Pappas JL, Stoermer EF (1996) A quantitative method for determining a representative algal sample count. J Phycol 32(4):693–696. CrossRefGoogle Scholar
  25. Peltier WR, Fairbanks RG (2006) Global glacial ice volume and last glacial maximum duration from an extended Barbados Sea level record. Quat Sci Rev 25:3322–3337. CrossRefGoogle Scholar
  26. Pico T, Mitrovica JX, Ferrier KL, Braun J (2016) Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta. Quat Sci Rev 152:72–79. CrossRefGoogle Scholar
  27. Pico T, Creveling JR, Mitrovica JX (2017) Sea-level records from the U.S. mid-Atlantic constrain Laurentide ice sheet extent during marine isotope stage 3. Nat Commun 8:15612. CrossRefGoogle Scholar
  28. Rios EC (2009) Compendium of Brazilian seashells. Evangraf Porto Alegre, 668 pGoogle Scholar
  29. Ritter MN, Erthal F, Kosnik MA, Coimbra JC, Kaufman DS (2017) Spatial variation in the temporal resolution of subtropical shallow-water molluscan death assemblages. Palaios 32:572–583. CrossRefGoogle Scholar
  30. Rosa MLCC, Barboza EG, Dillenburg SR, Tomazelli LJ, Ayup-Zouain RN (2011) The Rio Grande do Sul (southern Brazil) shoreline behavior during the quaternary: a cyclostratigraphic analysis. J Coast Res SI 64:686–690Google Scholar
  31. Rosa MLCC, Barboza EG, Abreu VS, Tomazelli LJ, Dillenburg SR (2017) High frequency sequences in the quaternary of Pelotas Basin (coastal plain): a record of degradational stacking as a function of longer-term base-level fall. Braz J Geol 47:183–207. CrossRefGoogle Scholar
  32. Salvaterra AS, Santos RF, Salaroli AB, Figueira RCL, Mahiques MM (2017) Evidence of a marine isotope stage 3 transgression at the Baixada Santista, south-eastern Brazilian coast. Braz J Geol 47:693–702. CrossRefGoogle Scholar
  33. Siddall M, Rohling EJ, Thompson WG, Waelbroeck C (2008) Marine isotope stage 3 sea level fluctuations: data synthesis and new outlook. Rev Geophys 46(RG4003):1–29. Google Scholar
  34. Silva ALC, Silva MAM, Gambôa LAP, Rodrigues AR (2014) Sedimentary architecture and depositional evolution of the quaternary coastal plain of Maricá, Rio de Janeiro, Brazil. Braz J Geol 44(2):191–206. CrossRefGoogle Scholar
  35. Silva WG, Zerfass GSA, Souza PA, Helenes J (2015) Biochronostratigraphy and paleoenvironment analysis of Neogene deposits from the Pelotas Basin (well 2-TG-96-RS), southernmost Brazil. An Acad Bras Cienc 87(3):1565–1582. CrossRefGoogle Scholar
  36. Villwock JA, Tomazelli LJ, Loss EL, Dehnhardt EA, Horn Filho NO, Bachi FA, Dehnhardt BA (1986) Geology of the Rio Grande do Sul coastal province. In: Rabassa J (ed) Quat South Amer Antarct Pen, vol 4. p 79–97Google Scholar
  37. Wright JD, Sheridan RE, Miller KG, Uptegrove J, Cramer BS, Browning JV (2009) Late Pleistocene Sea level on the New Jersey margin: implications to eustasy and deep-sea temperature. Glob Planet Chang 66:93–99. CrossRefGoogle Scholar
  38. Yokoyama Y, Esat TM, Lambeck K (2001) Coupled climate and sea-level changes deduced from Huon peninsula coral terraces of the last ice age. Earth Planet Sci Lett 193(3–4):579–587. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sergio R. Dillenburg
    • 1
    Email author
  • Eduardo G. Barboza
    • 1
    • 2
  • Maria Luiza C. C. Rosa
    • 1
  • Felipe Caron
    • 2
  • Rodrigo Cancelli
    • 3
  • Cristiane B. Santos-Fischer
    • 3
  • Renato P. Lopes
    • 4
  • Matias do Nascimento Ritter
    • 2
  1. 1.Instituto de Geociências, Centro de Estudos de Geologia Costeira e OceânicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Campus do Litoral, Centro de Estudos Costeiros, Limnológicos e MarinhosUniversidade Federal do Rio Grande do SulTramandaíBrazil
  3. 3.Instituto de Geociências, Programa de Pós-Graduação em GeociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Laboratório de Oceanografia CosteiraUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations