Advertisement

Geo-Marine Letters

, Volume 39, Issue 3, pp 239–248 | Cite as

Last 35,000-year water column temperature and productivity variation in the Eastern Arabian Sea: monsoon and global climate connection

  • A RajasreeEmail author
  • Vikesano R. Punyu
  • Virupaxa K. Banakar
Original
  • 60 Downloads

Abstract

A radiocarbon-dated sediment core from the flat top of Wadia Guyot at a 1500-m water depth in the Eastern Arabian Sea (EAS), western margin of India, preserves the records of past changes in water column temperatures and surface productivity. The time-series of oxygen isotope record extracted from planktonic foraminifera Globigerinoides (G.) sacculifer allows us to identify the Last Glacial Maximum (LGM, Ave. + 0.3 ‰: ~ 28–20 ka), the deglacial transition (a decrease from + 0.3‰ to − 1.2‰: ~ 20–11 ka), and the Holocene intervals (Ave. − 1.2‰: ~ 11–5 ka). The LGM cooling of the mixed layer by ~ 2 °C, thermocline by ~ 3 °C, and bottom water by ~ 4 °C is evident. The commencement of deglacial warming of the mixed layer lags thermocline warming by ~ 1 ky and bottom water warming by ~ 3ky. As different water masses of local and remote origin occur at different depths in the EAS, the observed offsets in timing and magnitude of changes in the temperatures through deglaciation indicate their independent behavior to past climate variation. The time-series of Corg, n-alkanes, and abundance of Uvigerina spp. exhibit distinct enrichments during the LGM as compared to Holocene (~ 1.7% vs 1.1%; ~ 1800 ng/g vs 1200 ng/g and ~ 20 vs < 5 tests/g of coarse fraction, respectively), which suggest enhanced surface productivity and accordingly increased export production.

Notes

Acknowledgments

The authors thank the anonymous reviewers for constructive comments and suggestions and crew and officers of the IB. Boris Petrov for assistance in sampling. The sediment core was collected during a cruise for Cobalt Crust Exploration Project funded to VKB by the Ministry of Earth Sciences. RS and VP thank the CSIR and UGC respectively for doctoral Fellowship. Mike Hall and James Rolfe of Cambridge University and De Martino Mitzi of Arizona University are thanked for measuring oxygen isotopes and radiocarbon respectively. This is NIO manuscript Ref. No: 0012-821X.

References

  1. Agnihotri R, Sarin MM, Somayajulu BLK, Bull AJT, Burr GS (2003) Late-quaternary biogenic productivity and organic carbon deposition in the eastern Arabian Sea. Palaeogeogr Palaeoclimatol Palaeoecol 197:43–60CrossRefGoogle Scholar
  2. Anand P, Kroon D, Singh AD, Ganeshram RS, Ganssen G, Elderfield H (2008) Coupled sea surface temperature-seawater d18O reconstructions in the Arabian Sea at the millennial scale for the last 35 ka. Paleoceanography 23:PA4207.  https://doi.org/10.1029/2007PA001564 CrossRefGoogle Scholar
  3. Anderson DA, Prell WL (1993) A 300 ky record of upwelling off Oman during the late Quaternary: evidence of the Asian southwest monsoon. Paleoceanogr. 13:607–621Google Scholar
  4. Banakar VK, Gupta SM, Padmavathi VK (1991) Abyssal sediment erosion in the Central Indian Basin: evidence from radiochemical and radiolarian studies. Mar Geol 96:167–173CrossRefGoogle Scholar
  5. Banakar VK, Mahesh BS, Burr G, Chodankar AR (2010) Climatology of the eastern Arabian Sea during the last glacial cycle reconstructed from paired measurement of foraminiferal δ18O and Mg/Ca. Quat Res 73:535–540CrossRefGoogle Scholar
  6. Banakar VK, Baidya S, Piotrowski AM, Shankar D (2017) Indian summer monsoon forcing on the deglacial polar cold reversals. J Earth Syst Sci 26.  https://doi.org/10.1007/s12040-017-0864-5
  7. Barker S, Greaves M, Elderfield H (2003) A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem Geophys Geosyst 4:8407CrossRefGoogle Scholar
  8. Beal LM, Chereskin TK, Harry LB, Amy F (2003) Variability of water properties, heat and salt fluxes in the Arabian Sea, between the onset and wane of the 1995 southwest monsoon. Deep-Sea Res II 50:2049–2075CrossRefGoogle Scholar
  9. Berger WH, Bonneau MC, Parker FL (1982) Foraminifera on the deep-sea floor: lysocline and dissolution rate. Oceanol Acta 5(249–258):2003Google Scholar
  10. Bhattacharya GC, Murty GPS, Srinivas K, Chaubey AK, Sudhakar T, Nair RR (1994) Swath bathymetric investigation of the seamounts located in the Laxmi Basin, Eastern Arabian Sea. Mar Geod 17:169–182CrossRefGoogle Scholar
  11. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  12. Broecker WS, Denton GH (1989) The role of ocean-atmosphere reorganizations in glacial cycles. Geochim Cosmochim Acta 53:2465–2501CrossRefGoogle Scholar
  13. Burns SJ, Fleitmann D, Matter A, Kramers J, Al-Subbary AA (2003) Indian Ocean climate and an absolute chronology over Dansgaard/Oeshger events 9 to 13. Science 301:1365–1367CrossRefGoogle Scholar
  14. Cayre O, Bard E (1999) Planktonic foraminiferal and alkenone records of the last deglaciation from the eastern Arabian Sea. Quat Res 52:337–342CrossRefGoogle Scholar
  15. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714CrossRefGoogle Scholar
  16. Cléroux C, deMenocal P, Arbuszewski J, Linsley B (2013) Reconstructing the upper water column thermal structure in the Atlantic Ocean. Paleoceanogr. 28:503–516.  https://doi.org/10.1002/palo.20050 CrossRefGoogle Scholar
  17. Curry WB, Oppo DW (2005) Glacial water mass geometry and the distribution of δ13C of CO2 in the western Atlantic Ocean. Paleoceanogr 20:1–12.  https://doi.org/10.1029/2004PA001021 CrossRefGoogle Scholar
  18. Dahl KA, Oppo DW (2006) Sea surface pattern reconstructions in the Arabian Sea. Paleoceanogr 21:PA1014.  https://doi.org/10.1029/2005PA001162 CrossRefGoogle Scholar
  19. Danzeglocke U, Jois O, Wenninger B (2008) CalPal 2007 online. http://www.calpal-online.de/, 2008-10-05
  20. Das M, Singh RK, Gupta AK, Bhaumik AK (2017) Holocene strengthening of the oxygen minimum zone in the northwestern Arabian Sea linked to changes in intermediate water circulation or Indian monsoon intensity? Palaeogeogr Palaeocl 483:125–135CrossRefGoogle Scholar
  21. De Villiers S, Greaves M, Elderfield H (2002) An intensity ration calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES. Geochem Geophys Geosyst 3(2001GC000169)Google Scholar
  22. Dekens PS, Lea DW, Pak DK, Spero HJ (2002) Core-top calibration of Mg/Ca in tropical foraminifera: refining paleotemperature estimation. Geochem Geophys Geosyst 3:1022–1029.  https://doi.org/10.1029/2001gC000200 CrossRefGoogle Scholar
  23. Delaney ML, Be AWH, Boyle EA (1985) Li, Sr, Mg and Na in foraminiferal calcite shells from laboratory culture, sediment traps and sediment cores. Geochim Cosmochim Acta 49:1327–1341CrossRefGoogle Scholar
  24. Elderfield H, Ganssen G (2000) Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405:442–445CrossRefGoogle Scholar
  25. Elderfield H, Greaves M, Barker S, Hall IR, Tripati A, Ferretti P, Crowhurdt S, Booth L, Daunt C (2010) A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quat Sci Rev 29:160–169CrossRefGoogle Scholar
  26. Fine RA, Smethie WM Jr, Bullister JL, Rhein M, Min DH, Warner MJ, Poisson A, Weiss RF (2008) Decadal ventilation and mixing of Indian Ocean waters. Deep-Sea Res I Oceanogr Res Pap 55:20–37CrossRefGoogle Scholar
  27. Fontugne MR, Duplessy JC (1986) Variations of the monsoon regime during the upper Quaternary: evidence from carbon isotopic record of organic matter in North Indian Ocean sediment cores. Palaeogeogr Palaeoclimatol Palaeoecol 56:69–88CrossRefGoogle Scholar
  28. Gooday AJ (2003) Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics. Adv Mar Biol 46:1–90CrossRefGoogle Scholar
  29. Harji RR, Yvenat A, Bhosle NB (2008) Sources of hydrocarbons in sediments of the Mandovi estuary and the Marmugoa harbour, west coast of India. Environ Int 34:959–965CrossRefGoogle Scholar
  30. Higginson MJ, Altabet MA, Murray DW, Murray RW, Herbert TD (2004) Geochemical evidence for abrupt changes in relative strength of the Arabian monsoons during a stadial/interstadial climate transition. Geochim Cos-mochim Acta 68(19):3807e3826Google Scholar
  31. Howe JN, Piotrowski AM, Noble TL, Mulitza S, Chiessi CM, Bayon G (2016) North Atlantic deep water production during the last glacial maximum. Nat Commun 7Google Scholar
  32. Jung SJA, Kroon D, Ganssen G, Peeters F, Ganeshram R (2009) Enhanced Arabian Sea intermediate water flow during glacial North Atlantic cold phases. Earth Planet Sci Lett 280:220–228CrossRefGoogle Scholar
  33. Krishna KS, Gopala Rao D, Sar D (2006) Nature of the crust in the Laxmi Basin (14°-20° N),western continental margin of India. Tectonics 25:TC1006CrossRefGoogle Scholar
  34. Kudrass HR, Hofmann A, Doose H, Emeis K, Erlenkeuser H (2001) Modulation and amplification of climatic changes in the Northern Hemisphere by the Indian summer monsoon during the past 80 k.y. Geology 29:63–66CrossRefGoogle Scholar
  35. Lear C, Rosenthal Y, Slowey N (2002) Benthic foraminiferal Mg/Ca paleothermometry a revised core-top calibration. Geochim Cosmochim Acta 66:3375–3387CrossRefGoogle Scholar
  36. Leuschner DC, Sirocko F (2000) The low-latitude monsoon climate during Dansgaard–Oeschger cycles and Heinrich events. Quat Sci Rev 19:243–254CrossRefGoogle Scholar
  37. Martin WR, Sayles FL (1996) CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic. Geochim Cosmochim Acta 60:243–263CrossRefGoogle Scholar
  38. Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289CrossRefGoogle Scholar
  39. Olson DB, Hitchcock GL, Fine RA, Warren BA (1993) Maintenance of the low-oxygen layer in the central Arabian Sea. Deep-Sea Res II Top Stud Oceanogr 40(3):673–685CrossRefGoogle Scholar
  40. Pourmand A, Marcantonio F, Bianchi TS, Canuel EA, Waterson EJ (2007) A 28-ka history of sea surface temperature, primary productivity and planktonic community variability in the western Arabian Sea. Paleoceanography 22(4):Pa4208.  https://doi.org/10.1029/2007pa001502 CrossRefGoogle Scholar
  41. Prahl FG, Dymond J, Sparrow MA (2000) Annual biomarker record for export production in the central Arabian Sea. Deep-Sea Res Part II 47:1581–1604CrossRefGoogle Scholar
  42. Raza T, Ahmad SM, Steinke S, Raza W, Lone MA, Beja SK, Suseela G (2017) Glacial to Holocene changes in sea surface temperature and seawater δ18O in the Northern Indian Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 485:697–705.  https://doi.org/10.1016/j.palaeo.2017.07.026 CrossRefGoogle Scholar
  43. Reichart GJ, Dulk MD, Visser HJ, van der Weijden CH, Zachariasse WJ (1997) A 225 Kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the Murray Ridge (northern Arabian Sea). Palaeogeogr Palaeoclimatol Palaeoecol 134:149–169CrossRefGoogle Scholar
  44. Reichart GJ, Lournes LJ, Zachariasse WJ (1998) Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years. Paleoceanogr 13:607–621CrossRefGoogle Scholar
  45. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, van der Plicht J (2013) IntCal13 and MARINE13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887.  https://doi.org/10.2458/azu_js_rc.55.16947 CrossRefGoogle Scholar
  46. Rickaby REM, Halloran P (2005) Cool La Niña during the warmth of the Pliocene? Science 307:1948–1952CrossRefGoogle Scholar
  47. Rippert N, Baumann KH, Patzold J (2015) Thermocline fluctuations in the western tropical Indian Ocean during the past 35 ka. J Quat Sci 30:201–210CrossRefGoogle Scholar
  48. Rohling EJ, Fenton M, Jorissen FJ, Bertrand P, Ganssen G, Caulet JP (1998) Magnitudes of sea level lowstands of the past 500,000 years. Nature 394:162–165CrossRefGoogle Scholar
  49. Romahn S, Mackensen A, Groeneveld J, Pätzold J (2014) Deglacial intermediate water reorganization: new evidence from the Indian Ocean. Clim Past 10:293–303.  https://doi.org/10.5194/cp-5110-5293-2014. CrossRefGoogle Scholar
  50. Rostek F, Bard E, Beaufort L, Sonzogni C, Ganssen G (1997) Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea. Deep-Sea Res II 44(6–7):1461–1480CrossRefGoogle Scholar
  51. Saher MH, Peters FJC, Kroon D (2007) Sea surface temperatures during the SW and NE monsoon seasons in the western Arabian Sea over the past 20,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 249:216–228CrossRefGoogle Scholar
  52. Saraswat R, Lea DW, Nigam R, Mackensen A, Naik DK (2013) Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections. Earth Planet Sci Lett 375:166e175CrossRefGoogle Scholar
  53. Schott FA, McCreary JP Jr (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51:1–123.  https://doi.org/10.1016/S0079-6611(01)00083-0
  54. Shankar D, Vinayachandran PN, Unnikrishnan AS (2002) The monsoon currents in the North Indian Ocean. Prog Oceanogr 52:63–120CrossRefGoogle Scholar
  55. Shetye SR, Gouveia AD, Shenoi SSC (1994) Circulation and water masses of the Arabian Sea. Proc Indian Acad Sci (Earth Planet Sci) 103:107–123Google Scholar
  56. Southon J, Kashgarian M, Fontugne M, Metivier B, Yim WWS (2002) Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44:167e180CrossRefGoogle Scholar
  57. Sreenivas P, Patnaik KVKRK, Prasad KVSR (2008) Monthly variability of mixed layer over Arabian Sea using ARGO data. Mar Geod 31(1):17–38CrossRefGoogle Scholar
  58. Tachikawa K, Elderfield H (2002) Microhabitat effects on Cd/Ca and δ13C of benthic foraminifera. Earth Planet Sci Lett 202:607–624CrossRefGoogle Scholar
  59. Thamban M, Rao VP, Schneider R, Grootes PM (2001) Glacial to Holocene fluctuations in hydrography and productivity along the southwestern continental margin of India. Paleogeogr Paleoclimatol Paleoecol 165:113–127CrossRefGoogle Scholar
  60. Thomas E, Booth L, Maslin M, Shackelton NJ (1995) Northeastern Atlantic benthic foraminifera during the last 45,000 years: change in productivity seen from bottom up. Paleoceanogr 10:545–562CrossRefGoogle Scholar
  61. van Aken HM, Ridderinkhof H, de Ruijter WPM (2004) North Atlantic deep water in the southwestern Indian Ocean. Deep-Sea Res I Oceanogr Res Pap 51:755–776CrossRefGoogle Scholar
  62. Völker C, Köhler P (2013) Responses of ocean circulation and carbon cycle to changes in the position of the Southern Hemisphere westerlies at Last Glacial Maximum. Paleoceanography 28:726–739CrossRefGoogle Scholar
  63. Weninger B, Danzeglocke U, Jöris O (2018) Comparison of dating results achieved using different radiocarbon age calibration curves and data. Internal notes of Cologne Radiocarbon Calibration Unit, www.calpal.de
  64. Wyrtki K (1973) Physical oceanography of the Indian Ocean. In: Zeitzschel B (ed) The biology of the Indian Ocean. Springer-Verlag, Berlin, pp 18–36CrossRefGoogle Scholar
  65. You Y (1998) Intermediate water circulation and ventilation of the Indian Ocean derived from water-mass contributions. J Mar Res 56:1029–1067CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CSIR-National Institute of OceanographyDona PaulaIndia
  2. 2.Department of Marine GeologyMangalore UniversityMangaloreIndia
  3. 3.Department of Earth SciencesIndian Institute of Science Education and ResearchKolkataIndia

Personalised recommendations