Geo-Marine Letters

, Volume 38, Issue 2, pp 179–192 | Cite as

The end-Permian regression in the western Tethys: sedimentological and geochemical evidence from offshore the Persian Gulf, Iran

  • Vahid Tavakoli
  • Mehrangiz Naderi-Khujin
  • Zahra Seyedmehdi
Original

Abstract

Detailed sedimentological and geochemical records across the Permian–Triassic boundary (PTB) in five offshore wells of the central Persian Gulf served to interpret the end-Permian sea-level change in this region. A decrease in sea level at the PTB was established by petrographical and geochemical study of the boundary. Thin sections showed that Upper Permian strata are composed of dolomite with minor anhydrite, changing into limestone in Lower Triassic sediments. Brine dilution toward the boundary supports sea-level fall in the Permian–Triassic transition, reflected by a decrease in anhydrite content and a shallowing-upward trend from lagoonal to peritidal facies. Isotopic changes at the boundary are in favor of sea-level fall. Changes in both carbon (from about 4 to –1‰) and oxygen (from 2 to –5‰) stable isotopes show negative excursions. The shift in carbon isotope values is a global phenomenon and is interpreted as resulting from carbonate sediment interaction with 12C-rich waters at the end-Permian sea-level fall. However, the oxygen isotope shift is attributed to the effect of meteoric waters with negative oxygen isotope values. The increase in strontium isotope ratios is also consistent with the high rate of terrestrial input at the boundary. The effect of meteoric conditions during diagenesis is evident from vuggy and moldic porosities below the PTB. The following transgression at the base of the Triassic is evident from the presence of reworked fossils and intraclasts resulting from deposition from agitated water.

Notes

Acknowledgements

We are grateful to the University of Tehran for providing financial support for this research. We thank one anonymous reviewer and the journal editors for constructive comments that greatly helped to improve the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

References

  1. Abdolmaleki J, Tavakoli V (2016) Anachronistic facies in the early Triassic successions of the Persian Gulf and its palaeoenvironmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 446:213–224CrossRefGoogle Scholar
  2. Abdolmaleki J, Tavakoli V, Asadi-Eskandar A (2016) Sedimentological and diagenetic controls on reservoir properties in the Permian–Triassic successions of western Persian Gulf, southern Iran. J Petr Sci Eng 141:90–113CrossRefGoogle Scholar
  3. Alsharhan AS (1989) Petroleum geology of the United Arab Emirates. J Pet Geol 12:253–288CrossRefGoogle Scholar
  4. Alsharhan AS, Nairn AEM (1997) Sedimentary basins and petroleum geology of the Middle East. Elsevier, AmsterdamGoogle Scholar
  5. Assereto R, Bosellini A, Fantini Sestini N, Sweet WC (1973) The Permian–Triassic boundary in the southern Alps (Italy). In: Logan A, Hills LV (eds) The Permian and Triassic systems and their mutual boundary. Can Soc Petrol Geol 2:176–199Google Scholar
  6. Baud A, Magaritz M, Holser WT (1989) Permian–Triassic of the Tethys: carbon isotope studies. Geol Rundsc 78:649–677CrossRefGoogle Scholar
  7. Baud A, Atudorei V, Sharp Z (1996) Late Permian and early Triassic evolution of the northern Indian margin: carbon isotope and sequence stratigraphy. Geodin Acta 9:57–77CrossRefGoogle Scholar
  8. Becker L, Poreda RL, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian–Triassic boundary: evidence from extraterrestrial gases in fullerenes. Science 291:1530–1533CrossRefGoogle Scholar
  9. Becker L, Poreda RJ, Basu AR, Pope KO, Harrison TM, Nicholson C, Iasky R (2004) Bedout: a possible end-Permian impact crater offshore of northwestern Australia. Science 304:1469–1476CrossRefGoogle Scholar
  10. Brandner R (1988) The Permian–Triassic boundary section in the Dolomites (southern Alps, Italy), San Antonio section. Bet Geol Bundesanst 15:49–56Google Scholar
  11. Brandner R, Donofrio DA, Krainer K, Mostler H, Nazarow MA, Resch W, Stingl V, Weissert H (1986) Events at the Permian–Triassic boundary in the southern and northern Alps. Italian IGCP project 203, Field Conference on Permian and Permian–Triassic Boundary in the South-Alpine Segment of the Western Tethys, and Additional Regional Reports (Brescia, 4–12 July 1986), Abstract Book, p 15Google Scholar
  12. Cui Y, Kump LR (2015) Global warming and the end-Permian extinction event: proxy and modeling perspectives. Earth Sci Rev 149:5–22CrossRefGoogle Scholar
  13. Dickson JAD (1965) A modified staining technique for carbonates in thin section. Nature 205:587CrossRefGoogle Scholar
  14. Dobruskina IA (1994) Triassic floras of Eurasia. Springer, New YorkGoogle Scholar
  15. Dolenec T, Buser S, Dolenec M (1998) The Permian–Triassic boundary in the Karavanke Mountains (Slovenia): stable isotope variations in the boundary carbonate rocks of the Košutnik Creek and Brsnina section. Geologija 41:17–27CrossRefGoogle Scholar
  16. Eltom HA, Abdullatif OM, Babalola LO, Bashari MA, Yassin M, Osman MS, Abdulraziq AM (2017) Geochemical characterization of the Permian-Triassic transition at outcrop, central Saudi Arabia. J Pet Geol 39:95–113CrossRefGoogle Scholar
  17. Erwin DH (1990) Carboniferous-Triassic gastropod diversity patterns and the Permian–Triassic mass extinction. Paleobiology 16:187–203CrossRefGoogle Scholar
  18. Erwin DH (1993) The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New YorkGoogle Scholar
  19. Erwin DH (1996) Understanding biotic recoveries: extinction, survival and preservation during the end-Permian mass extinction. In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology, pp 398–418Google Scholar
  20. Farabegoli E, Perri MC, Posenato R (2007) Environmental and biotic changes across the Permian–Triassic boundary in western Tethys: the Bulla parastratotype, Italy. Glob Planet Chang 55:109–135CrossRefGoogle Scholar
  21. Flügel E (2004) Microfacies of carbonate rocks. Springer, BerlinCrossRefGoogle Scholar
  22. Forney GG (1975) Permo-Triassic sea-level change. J Geol 83:773–779CrossRefGoogle Scholar
  23. Gaillot J, Vachard D (2007) The Khuff formation (Middle East) and time-equivalents in Turkey and South China: biostratigraphy from Capitanian to Changhsingian times (Permian), new foraminiferal taxa, and palaeogeographical implications. Coloquios Paleontol 57:37–223Google Scholar
  24. Galfetti T, Bucher H, Ovtcharova M, Schaltegger U, Brayard A, Brühwiler T, Goudemand N, Weissert H, Hochuli P, Cordey F, Guodon K (2007) Timing of the early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth Planet Sci Lett 258:593–604CrossRefGoogle Scholar
  25. Gall JC, Grauvogel-Stamm L, Nel A, Papier F (1998) The Permian mass extinction and the Triassic recovery. C R Acad Sci Sér II 326:1–12Google Scholar
  26. Hallam A (1989) The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philos Trans R Soc Lond Ser B Biol Sci 325:437–455CrossRefGoogle Scholar
  27. Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–250CrossRefGoogle Scholar
  28. Hansen HJ (2006) Stable isotopes of carbon from basaltic rocks and their possible relation to atmospheric isotope excursions. Lithos 92:105–116CrossRefGoogle Scholar
  29. Heydari E, Hassandzadeh J, Wade WJ (2000) Geochemistry of central Tethyan upper Permian and lower Triassic strata, Abadeh region, Iran. Sediment Geol 137:85–99CrossRefGoogle Scholar
  30. Heydari E, Wade WJ, Hassanzadeh J (2001) Diagenetic origin of carbon and oxygen isotope compositions of Permian–Triassic boundary strata. Sediment Geol 143:191–197CrossRefGoogle Scholar
  31. Heydari E, Hassanzadeh J, Wade WJ, Ghazi AM (2003) Permian–Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction: part 1 - sedimentology. Palaeogeogr Palaeoclimatol Palaeoecol 193:405–423CrossRefGoogle Scholar
  32. Heydari E, Arzani N, Safaei M, Hassanzadeh J (2013) Ocean’s response to a changing climate: clues from variations in carbonate mineralogy across the Permian–Triassic boundary of the Shareza section, Iran. Glob Planet Chang 105:79–90CrossRefGoogle Scholar
  33. Holser WT, Magaritz M (1987) Events near the Permian–Triassic boundary. Modern Geol 11:155–180Google Scholar
  34. Holser WT, Schönlaub HP, Attrep M, Boeckelmann K, Klein P, Magaritz M, Orth CJ, Fenninger A, Jenny C, Kralik M, Mauritsch H, Pak E, Schramm JM, Stattegger K, Schmöller R (1989) A unique geochemical record at the Permian/Triassic boundary. Nature 337:39–44CrossRefGoogle Scholar
  35. Horacek M, Brandner R, Abart R (2007) Carbon isotope record of the P/T boundary and the lower Triassic in the southern Alps: evidence for rapid changes in storage of organic carbon. Palaeogeogr Palaeoclimatol Palaeoecol 252:347–354CrossRefGoogle Scholar
  36. Insalaco E, Virgone A, Courme B, Gaillot J, Kamali M, Moallemi A, Lotfpour M, Monibi S (2006) Upper Dalan member and Kangan formation between the Zagros Mountains and offshore Fars, Iran: depositional system, biostratigraphy and stratigraphic architecture. GeoArabia 11:75–176Google Scholar
  37. Knoll AH, Bambach AK, Canfield DE, Grotzinger JP (1996) Comparative earth history and late Permian mass extinction. Science 273:452–457CrossRefGoogle Scholar
  38. Koehrer B, Aigner T, Forke H, Poppelreiter M (2012) Middle to upper Khuff (sequences KS1 to KS4) outcrop-equivalents in the Oman Mountains: grainstone architecture on a subregional scale. GeoArabia 17(4):59–104Google Scholar
  39. Konyuhov AI, Maleki B (2006) The Persian Gulf Basin: geological history, sedimentary formation, and petroleum potential. Lithol Miner Resour 41:344–361CrossRefGoogle Scholar
  40. Korte C, Kozur HW (2005) Carbon isotope stratigraphy across the Permian/Triassic boundary at Jolfa (NW-Iran), Peitlerkofel (Sas de Pütia, Sass de Putia), Pufels (Bula, Bulla), Tesero (all three southern Alps, Italy) and Gerennavár (Bükk Mts., Hungary). J Alpine Geol 47:119–135Google Scholar
  41. Korte C, Kozur HW, Joachimski MM, Strauss H, Veizer J, Schwark L (2004) Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. Int J Earth Sci 93:565–581Google Scholar
  42. Korte C, Pande P, Kalia P, Kozur HW, Joachimski MM, Oberhänsli H (2010) Massive volcanism at the Permian–Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. J Asian Earth Sci 37:293–311CrossRefGoogle Scholar
  43. Kozur H (2005) Correlation of the continental uppermost Permian and lower Triassic of the German Basin with the marine scale in the light of new data from China and Iran. Albertiana 33:48–51Google Scholar
  44. Kraus SH, Brandner R, Heubeck C, Kozur HW, Struck U, Korte C (2013) Carbon isotope signatures of latest Permian marine successions of the southern Alps suggest a continental runoff pulse enriched in land plant material. Fossil Rec 16:97–109CrossRefGoogle Scholar
  45. Krull ES, Lehrmann DJ, Druke D, Kessel BJ, Yu Y, Li R (2004) Stable carbon isotope stratigraphy across the Permian–Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China. Palaeogeogr Palaeoclimatol Palaeoecol 204:297–315CrossRefGoogle Scholar
  46. Liao Z, Hu W, Cao J, Wang X, Yao S, Wu H, Wan Y (2016) Heterogeneous volcanism across the Permian–Triassic boundary in South China and implications for the latest Permian mass extinction: new evidence from volcanic ash layers in the lower Yangtze region. J Asian Earth Sci 127:197–210CrossRefGoogle Scholar
  47. McArthur J (2007) Recent trends in strontium isotope stratigraphy. Terra Nova 6:331–358CrossRefGoogle Scholar
  48. McArthur JM, Howarth RJ, Shields GA (2012) Strontium isotope stratigraphy. In: Felix M, Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale 2012, pp 127–144Google Scholar
  49. Muttoni G, Gaetani M, Kent DV, Sciunnach D, Angiolini L, Berra F, Garzanti E, Mattei M, Zanchi A (2009) Opening of the neo-Tethys Ocean and the Pangea B to Pangea a transformation during the Permian. GeoArabia 14:17–48Google Scholar
  50. Newell ND (1967) Revolutions in the history of life. Geol Soc Am Spec Publ 89:63–91Google Scholar
  51. Nindre YL, Vaslet D, Metour JL, Bertrand J, Halawani M (2003) Subsidence modelling of the Arabian platform from Permian to Paleogene outcrops. Sediment Geol 156:263–285CrossRefGoogle Scholar
  52. Palmer MR, Elderfield H (1985) Sr isotope composition of sea water over the past 75 Myr. Nature 314:526–528CrossRefGoogle Scholar
  53. Perri MC, Farabegoli E (2003) Conodonts across the Permian–Triassic boundary in the southern Alps. Cour Forschungsinst Senck 245:281–313Google Scholar
  54. Pin CY, Bassin C (1992) Evaluation of a strontium-specific extraction chromatographic method for isotopic analysis in geological materials. Anal Chim Acta 269:249–255CrossRefGoogle Scholar
  55. Rahimpour-Bonab H, Asadi-Eskandar A, Sonei R (2009) Controls of Permian–Triassic boundary over reservoir characteristics of south Pars gas field, Persian Gulf. Geol J 44:341–364Google Scholar
  56. Retallack GL (1999) Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geol Soc Am Bull 111:52–70CrossRefGoogle Scholar
  57. Retallack GJ, Jahren AH, Sheldon ND, Chakrabarti R, Metzger CA, Smith RMH (2005) The Permian–Triassic boundary in Antarctica. Antarct Sci 17:241–258CrossRefGoogle Scholar
  58. Schneebeli-Hermann E, Kürschner WM, Hochuli PA, Ware D, Weissert H, Bernasconi SM, Roohi G, Rehman K, Bucher H (2013) Evidence for atmospheric carbon injection during end-Permian extinction. Geology 41(5):579–582CrossRefGoogle Scholar
  59. Scholger R, Mauritsch HJ, Brandner R (2000) Permian–Triassic boundary magnetostratigraphy from the southern Alps (Italy). Earth Planet Sci Lett 176:495–508CrossRefGoogle Scholar
  60. Schopf TJM (1974) Permo-Triassic extinctions: relation to seafloor spreading. J Geol 82:129–143CrossRefGoogle Scholar
  61. Shen SZ, Cao CQ, Henderson CM, Wang XD, Shi GR, Wang Y, Wang W (2006) End-Permian mass extinction pattern in the northern peri-Gondwanan region. Palaeoworld 15:3–30CrossRefGoogle Scholar
  62. Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao CQ, Rothman DH, Henderson CM, Ramezani J, Zhang H, Shen Y, Wang XD, Wang W, Mu L, Li WZ, Tang YG, Liu XL, Liu LJ, Zeng Y, Jiang YF, Jin YG (2011) Calibrating the end Permian mass extinction. Science 334:1367–1372CrossRefGoogle Scholar
  63. Son TH, Koeberl C, Ngoc NL, Huyen DT (2007) The Permian–Triassic boundary sections in northern Vietnam (Nhi Tao and lung cam sections): carbon-isotope excursion and elemental variations indicate major anoxic event. Palaeoworld 16:51–66CrossRefGoogle Scholar
  64. Song H, Wignall PB, Tong J, Song H, Chen J, Chu D, Tian L, Luo M, Zong K, Chen Y, Lai X, Zhang K, Wang H (2015) Integrated Sr isotope variations and global environmental changes through the late Permian to early late Triassic. Earth Planet Sci Lett 424:140–147CrossRefGoogle Scholar
  65. Stanley SM (1988) Paleozoic mass extinctions; shared patterns suggest global cooling as a common cause. Am J Sci 288:334–352CrossRefGoogle Scholar
  66. Sweet WC, Yang Z, Dickins JM, Yin H (1996) Permo-Triassic events in the eastern Tethys - an overview. In: Sweet WC, Yang Z, Dickins JM, Yin H (eds) Permo-Triassic boundary events in the eastern Tethys. Cambridge University Press, Cambridge, pp 1–8Google Scholar
  67. Tavakoli V (2015) Chemostratigraphy of the Permian–Triassic strata of the offshore Persian Gulf, Iran. In: Ramkumar M (ed) Chemostratigraphy: concepts, techniques, and applications. Elsevier, Amsterdam, pp 373–393CrossRefGoogle Scholar
  68. Tavakoli V (2017) Application of gamma deviation log (GDL) in sequence stratigraphy of carbonate strata, an example from offshore Persian Gulf, Iran. J Pet Sci Eng 156:868–876CrossRefGoogle Scholar
  69. Tavakoli V, Rahimpour-Bonab H (2012) Uranium depletion across Permian–Triassic boundary in Persian Gulf and its implications for paleooceanic conditions. Palaeogeogr Palaeoclimatol Palaeoecol 350:101–113CrossRefGoogle Scholar
  70. Tavakoli V, Rahimpour-Bonab H, Esrafili-Dizaji B (2011) Diagenetic controlled reservoir quality of south Pars gas field, an integrated approach. Compt Rendus Geosci 343:55–71CrossRefGoogle Scholar
  71. Vaslet D, Nindre LE, Vachard YM, Broutin D, Crasquin-Soleau J, Bertheline S, Gailot M, Halawani J, Al-Husseini M (2005) The Permian-Triassic Khuff formation of Central Saudi Arabia. GeoArabia 10(4):77–134Google Scholar
  72. Veizer J (1989) Strontium isotopes in seawater through time. Annu Rev Earth Planet Sci 17:141–167CrossRefGoogle Scholar
  73. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88CrossRefGoogle Scholar
  74. Wang W, Kano A, Okumura T, Ma Y, Matsumoto R, Matsuda N, Ueno K, Chen X, Kakuwa Y, Gharaie MHM, Ilkhchi MR (2007) Isotopic chemostratigraphy of the microbialite-bearing Permian–Triassic boundary section in the Zagros Mountains, Iran. Chem Geol 244:708–714CrossRefGoogle Scholar
  75. Ward PD, Montgomery DR, Smith R (2000) Altered river morphology in South Africa related to the Permian–Triassic extinction. Science 289:1740–1743CrossRefGoogle Scholar
  76. Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, BerlinCrossRefGoogle Scholar
  77. Wignall PB, Hallam A (1992) Anoxia as a cause of the Permian/Triassic extinction: facies evidence from northern Italy and the western United States. Palaeogeogr Palaeoclimatol Palaeoecol 93:21–46CrossRefGoogle Scholar
  78. Wignall PB, Sun YD, Bond DPG, Izon G, Newton RJ, Vedrine S, Widdowson M, Ali JR, Lai L, Jiang HS, Cope H, Bottrell SH (2009) Volcanism, mass extinction and carbon isotope fluctuations in the Permian of China. Science 324:1179–1182CrossRefGoogle Scholar
  79. Xie SC, Wang YB (2011) Geomicrobiological perspective on the pattern and causes of the 5 million year Permo/Triassic biotic crisis. Front Earth Sci 5:23–36CrossRefGoogle Scholar
  80. Ya-Sheng W, Hong-Xia J, Jia-Song F (2010) Evidence for sea-level falls in the Permian-Triassic transition in the Ziyun area, South China. Geol J 45:170–185CrossRefGoogle Scholar
  81. Yin HF, Feng QL, Lai XL, Baud A, Tong JN (2007) The protracted Permo-Triassic crisis and multi-episode extinction around the Permian–Triassic boundary. Glob Planet Chang 55:1–20CrossRefGoogle Scholar
  82. Yin H, Jiang H, Xia W, Feng Q, Zhang N, Shen J (2013) The end-Permian regression in South China and its implication on mass extinction. Earth Sci Rev 137:19–33CrossRefGoogle Scholar
  83. Yin HF, Jiang HS, Xia WC, Feng QL, Zhang N, Shen J (2014) The end-Permian regression in South China and its implication on mass extinction. Earth Sci Rev 137:19–33CrossRefGoogle Scholar
  84. Ziegler AM, Parrish JM, Yao J, Gyllenhaal ED, Rowley DB, Parrish JT, Shangyou N, Bekker A, Hulver ML (1993) Early Mesozoic phytogeography and climate. Philos Trans B 341:297–305CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Vahid Tavakoli
    • 1
  • Mehrangiz Naderi-Khujin
    • 2
  • Zahra Seyedmehdi
    • 3
  1. 1.School of Geology, College of ScienceUniversity of TehranTehranIran
  2. 2.Pars Oil and Gas CompanyTehranIran
  3. 3.Department of Geology, Faculty of Earth SciencesKharazmi UniversityTehranIran

Personalised recommendations