Advertisement

On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks

  • Ahmad Abbasi
  • Behnam FirouziEmail author
  • Polat Sendur
Original Article
  • 60 Downloads

Abstract

A novel Harris hawks optimization algorithm is applied to microchannel heat sinks for the minimization of entropy generation. In the formulation of the heat transfer model of the microchannel, the slip flow velocity and temperature jump boundary conditions have been taken into account. A variety of materials and fluids have also been evaluated to determine the optimal design of the microchannel. Since the main objective of this paper is to assess the search and exploration ability of the novel Harris Hawks algorithm, results are also benchmarked with those of commonly used particle swarm optimization, bees optimization algorithm, grasshopper optimization algorithm, whale optimization algorithm and dragonfly algorithm. Finally, results are compared to the analytical results and results obtained by the application of genetic algorithms. Results show that the Harris hawks algorithm has a superior performance in minimizing the entropy generation of the microchannel. The algorithm is also more computationally efficient compared to the aforementioned algorithms. Moreover, optimization results indicate that the use of copper for the microchannel and ammonia as the coolant leads to minimal entropy generation and, therefore, is considered as the best design. Considering the poor corrosive characteristics of copper, aluminum as the microchannel material is proposed as an alternative.

Keywords

Optimization Harris hawks optimization (HHO) Entropy generation Micro-channel heat sink Knudsen number Metaheuristic optimization 

List of symbols

A

Surface area of heating (mm2)

Cp

Specific heat of fluid (J kg−1 K−1)

Dh

Hydraulic diameter (mm)

f

Friction factor

G

Volume flow rate (m3 s−1)

Hc

Channel height (mm)

hav

Average heat transfer coefficient (W m−2 K−1)

hfin

Heat transfer coefficient for base surface (W m−2 K−1)

hbase

Heat Transfer coefficient along fin surface (W m−2 K−1)

Kn

Knudsen number

K

Thermal conductivity of solid (W m−1 K−1)

Ka

Thermal conductivity of air (W m−1 K−1)

kce

Sum of entrance and exit losses

keq

Ratio of thermal conductivity of fluid to solid

Ks

Slip constant

L

Length of channel in flow direction (mm)

m

Fin parameter (m−1)

\(\dot{m}\)

Total mass flow rate (kg s−1) (the same symbol is used for fin parameter ABOVE)

N

Total number of microchannels

NuDh

Nusselt number based on hydraulic diameter

PeDh

Peclet number based on hydraulic diameter

Pr

Prandtl number

q

Heat flux (W m−2)

R

Resistance (K W−1)

ReDh

Reynolds number based on hydraulic diameter

Sgen

Total entropy generation rate (W K−1)

T

Absolute temperature (K)

Uav

Average velocity in channels (m s−1)

Us

Slip velocity (m s−1)

W

Width of heat sink (mm)

Wc

Half of the channel width (mm)

Greek symbols

α

Thermal diffusivity (m2 s−1)

αc

Channel aspect ratio

αhs

Heat sink aspect ratio

β

Fin spacing ratio

P

Pressure drop across microchannel (Pa)

ηfin

Fin efficiency

γ

Ratio of specific heats

λ

Mean free path (m)

μ

Absolute viscosity of fluid (kg m−1 s−1)

ν

Kinematic viscosity of fluid (m2 s−1)

ρ

Fluid density (kg m−3)

σ

Tangential momentum accommodation coefficient

σt

Energy accommodation coefficient

ζu

Slip velocity coefficient

ζt

Temperature jump coefficient

Subscripts

a

Ambient

av

Average

b

Base surface

c

Channel

ce

Contraction and expansion

conv

Convective

f

Fluid

fin

Single fin

h

Hydraulic

hs

Heat sink

in

Inlet

out

Outlet

s

Slip

th

Thermal

w

Wall

Notes

References

  1. 1.
    Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Lett 2(5):126–129CrossRefGoogle Scholar
  2. 2.
    Li J, Peterson GP, Cheng P (2004) Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow. Int J Heat Mass Transf 47(19–20):4215–4231CrossRefGoogle Scholar
  3. 3.
    Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43Google Scholar
  4. 4.
    Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation. IEEE¸pp 4661–4667Google Scholar
  5. 5.
    Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41CrossRefGoogle Scholar
  6. 6.
    Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471MathSciNetCrossRefGoogle Scholar
  7. 7.
    Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47CrossRefGoogle Scholar
  8. 8.
    Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRefGoogle Scholar
  9. 9.
    Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073CrossRefGoogle Scholar
  10. 10.
    Yildiz AR, Abderazek H, Mirjalili S (2019) A comparative study of recent non-traditional methods for mechanical design optimization. Arch Comput Methods Eng.  https://doi.org/10.1007/s11831-019-09343-x CrossRefGoogle Scholar
  11. 11.
    Moayedi H, Mu’azu MA, Kok Foong L (2019) Swarm-based analysis through social behavior of grey wolf optimization and genetic programming to predict friction capacity of driven piles. Eng Comput.  https://doi.org/10.1007/s00366-019-00885-z CrossRefGoogle Scholar
  12. 12.
    Moezi SA, Zakeri E, Zare A (2018) Structural single and multiple crack detection in cantilever beams using a hybrid Cuckoo-Nelder–Mead optimization method. Mech Syst Signal Process 99:805–831CrossRefGoogle Scholar
  13. 13.
    Slowik A, Kwasnicka H (2017) Nature inspired methods and their industry applications—swarm intelligence algorithms. IEEE Trans Industr Inf 14(3):1004–1015CrossRefGoogle Scholar
  14. 14.
    Li J, Lu J, Yao L, Cheng L, Qin H (2019) Wind–solar–hydro power optimal scheduling model based on multi-objective dragonfly algorithm. Energy Procedia 158:6217–6224CrossRefGoogle Scholar
  15. 15.
    Suresh V, Sreejith S, Sudabattula SK, Kamboj VK (2019) Demand response-integrated economic dispatch incorporating renewable energy sources using ameliorated dragonfly algorithm. Electr Eng.  https://doi.org/10.1007/s00202-019-00792-y CrossRefGoogle Scholar
  16. 16.
    Abderazek H, Mirjalili AR, Yildiz S (2019) Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism. Knowl Based Syst.  https://doi.org/10.1016/j.knosys.2019.105237 CrossRefGoogle Scholar
  17. 17.
    Mirjalili S, Song Dong J (2020) Introduction to nature-inspired algorithms. In: Mirjalili S, Song Dong J, Lewis A (eds) Nature-inspired optimizers. Studies in computational intelligence, vol 811. Springer, Cham.  https://doi.org/10.1007/978-3-030-12127-3_1 CrossRefGoogle Scholar
  18. 18.
    Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872CrossRefGoogle Scholar
  19. 19.
    Moayedi H, Abdullahi MAM, Nguyen H, Rashid ASA (2019) Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils. Eng Comput.  https://doi.org/10.1007/s00366-019-00834-w CrossRefGoogle Scholar
  20. 20.
    Moayedi H, Osouli A, Nguyen H, Rashid ASA (2019) A novel Harris hawks’ optimization and k-fold cross-validation predicting slope stability. Eng Comput.  https://doi.org/10.1007/s00366-019-00828-8 CrossRefGoogle Scholar
  21. 21.
    Aleem SHA, Zobaa AF, Balci ME, Ismael SM (2019) Harmonic overloading minimization of frequency-dependent components in harmonics polluted distribution systems using Harris hawks optimization algorithm. IEEE Access 7:100824–100837CrossRefGoogle Scholar
  22. 22.
    Yildiz AR, Yildiz BS, Sait SM, Li X (2019) The Harris hawks, grasshopper and multi-verse optimization algorithms for the selection of optimal machining parameters in manufacturing operations. Mater Test 61(8):725–733CrossRefGoogle Scholar
  23. 23.
    Golilarz NA, Addeh A, Gao H, Ali L, Roshandeh AM, Munir HM, Khan RU (2019) A new automatic method for control chart patterns recognition based on ConvNet and Harris Hawks meta heuristic optimization algorithm. IEEE Access 7:149398–149405CrossRefGoogle Scholar
  24. 24.
    Mehta MS, Singh MB, Gagandeep M (2019) Harris Hawks optimization for solving optimum load dispatch problem in power system. Int J Eng Res Technol 8(6):962–968Google Scholar
  25. 25.
    Yildiz BS, Yildiz AR (2019) The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components. Mater Test 61(8):744–748CrossRefGoogle Scholar
  26. 26.
    Golilarz NA, Gao H, Demirel H (2019) Satellite image de-noising with Harris hawks meta heuristic optimization algorithm and improved adaptive generalized gaussian distribution threshold function. IEEE Access 7:57459–57468CrossRefGoogle Scholar
  27. 27.
    Ekinci S, Hekimoğlu B, Demirören A, Kaya S (2019) Harris Hawks optimization approach for tuning of FOPID controller in DC–DC buck converter. In: 2019 International artificial intelligence and data processing symposium (IDAP). IEEE, pp 1–9Google Scholar
  28. 28.
    Too J, Abdullah AR, Mohd Saad N (2019) A new quadratic binary harris hawk optimization for feature selection. Electronics 8(10):1130CrossRefGoogle Scholar
  29. 29.
    Hussain K, Zhu W, Salleh MNM (2019) Long-term memory Harris’ hawk optimization for high dimensional and optimal power flow problems. IEEE Access 7:147596–147616CrossRefGoogle Scholar
  30. 30.
    Chen H, Jiao S, Wang M, Heidari AA, Zhao X (2019) Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J Clean Prod.  https://doi.org/10.1016/j.jclepro.2019.118778 CrossRefGoogle Scholar
  31. 31.
    Jia H, Lang C, Oliva D, Song W, Peng X (2019) Dynamic Harris hawks optimization with mutation mechanism for satellite image segmentation. Remote Sens 11(12):1421CrossRefGoogle Scholar
  32. 32.
    Yildiz AR, Yildiz BS, Sait SM, Bureerat S, Pholdee N (2019) A new hybrid Harris hawks–Nelder–Mead optimization algorithm for solving design and manufacturing problems. Mater Test 61(8):735–743CrossRefGoogle Scholar
  33. 33.
    Bao X, Jia H, Lang C (2019) A novel hybrid Harris hawks optimization for color image multilevel thresholding segmentation. IEEE Access 7:76529–76546CrossRefGoogle Scholar
  34. 34.
    Bui DT, Moayedi H, Kalantar B, Osouli A, Pradhan B, Nguyen H, Rashid ASA (2019) A novel swarm intelligence—Harris hawks optimization for spatial assessment of landslide susceptibility. Sensors 19(16):3590CrossRefGoogle Scholar
  35. 35.
    Wang ZH, Wang XD, Yan WM, Duan YY, Lee DJ, Xu JL (2011) Multi-parameters optimization for microchannel heat sink using inverse problem method. Int J Heat Mass Transf 54(13–14):2811–2819CrossRefGoogle Scholar
  36. 36.
    Bello-Ochende T, Liebenberg L, Meyer JP (2007) Constructal cooling channels for micro-channel heat sinks. Int J Heat Mass Transf 50(21–22):4141–4150CrossRefGoogle Scholar
  37. 37.
    Cruz-Duarte JM, Garcia-Perez A, Amaya-Contreras IM, Correa-Cely CR (2016) Designing a microchannel heat sink with colloidal coolants through the entropy generation minimisation criterion and global optimisation algorithms. Appl Therm Eng 100:1052–1062CrossRefGoogle Scholar
  38. 38.
    Cruz J, Amaya I, Correa R (2015) Optimal rectangular microchannel design, using simulated annealing, unified particle swarm and spiral algorithms, in the presence of spreading resistance. Appl Therm Eng 84:126–137CrossRefGoogle Scholar
  39. 39.
    Adham AM, Mohd-Ghazali N, Ahmad R (2014) Optimization of a rectangular microchannel heat sink using entropy generation minimization (EGM) and genetic algorithm (GA). Arabian Journal for Science and Engineering 39(10):7211–7222CrossRefGoogle Scholar
  40. 40.
    Husain A, Kim KY (2009) Thermal optimization of a microchannel heat sink with trapezoidal cross section. J Electron Packag 131(2):021005CrossRefGoogle Scholar
  41. 41.
    Husain A, Kim KY (2010) Enhanced multi-objective optimization of a microchannel heat sink through evolutionary algorithm coupled with multiple surrogate models. Appl Therm Eng 30(13):1683–1691CrossRefGoogle Scholar
  42. 42.
    Mohd-Ghazali N, Jong-Taek O, Chien NB, Chi KI, Zolpakar NA, Ahmad R (2014) Multiobjective optimization of microchannels with experimental convective heat transfer coefficient of liquid ammonia. In: International conference on industrial, engineering and other applications of applied intelligent systems. Springer, Cham, pp 470–478CrossRefGoogle Scholar
  43. 43.
    Xia GD, Jia YT, Li YF, Ma DD, Cai B (2016) Numerical simulation and multiobjective optimization of a microchannel heat sink with arc-shaped grooves and ribs. Numer Heat Transf Part A Appl 70(9):1041–1055CrossRefGoogle Scholar
  44. 44.
    Hamadneh N, Khan W, Tilahun S (2018) Optimization of microchannel heat sinks using prey-predator algorithm and artificial neural networks. Machines 6(2):26CrossRefGoogle Scholar
  45. 45.
    Singh BP, Garg H, Lall AK (2016) Optimization of microchannel heat sink using genetic algorithm and Taguchi method. In: AIP conference proceedings. AIP Publishing, vol 1724, no 1, p 020014Google Scholar
  46. 46.
    Deena R, Sai Sundara Krishnan GA (2019) A novel investigation of heat transfer characteristics in hybrid micro channel heat sink structure: opposition based ant lion optimization. Surf Rev Lett.  https://doi.org/10.1142/S0218625X19501439 CrossRefGoogle Scholar
  47. 47.
    Khan WA, Kadri MB, Ali Q (2013) Optimization of microchannel heat sinks using genetic algorithm. Heat Transf Eng 34(4):279–287CrossRefGoogle Scholar
  48. 48.
    Khan WA, Yovanovich MM, Culham J. R (2006) Optimization of microchannel heat sinks using entropy generation minimization method. In: Twenty-second annual ieee semiconductor thermal measurement and management symposium. IEEE, pp 78–86Google Scholar
  49. 49.
    Khan WA, Yovanovich MM (2008) Analytical modeling of fluid flow and heat transfer in microchannel/nanochannel heat sinks. J Thermophys Heat Transf 22(3):352–359CrossRefGoogle Scholar
  50. 50.
    Incropera Frank P, DeWitt DP (1996) Fundamentals of heat and mass transfer, vol 4. Wiley, New YorkGoogle Scholar
  51. 51.
    Kleiner MB, Kuhn SA, Haberger K (1995) High performance forced air cooling scheme employing microchannel heat exchangers. IEEE Trans Compon Packag Manuf Technol Part A: 18(4):795–804CrossRefGoogle Scholar
  52. 52.
    Kays WM, London AL (1964) Compact heat exchangers. McGraw Hill, New YorkGoogle Scholar
  53. 53.
    Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver press, Bar HarborGoogle Scholar
  54. 54.
    Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm—a novel tool for complex optimization problems. In: Intelligent production machines and systems. Elsevier Science Ltd., pp 454–459Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentOzyegin UniversityIstanbulTurkey

Personalised recommendations