Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures

  • Javad KatebiEmail author
  • Mona Shoaei-parchin
  • Mahdi Shariati
  • Nguyen Thoi Trung
  • Majid Khorami
Original Article


A developed comparative analysis of metaheuristic optimization algorithms has been used for optimal active control of structures. The linear quadratic regulator (LQR) has ignored the external excitation in solving the Riccati equation with no sufficient optimal results. To enhance the efficiency of LQR and overcome the non-optimality problem, six intelligent optimization methods including BAT, BEE, differential evolution, firefly, harmony search and imperialist competitive algorithm have been discretely added to wavelet-based LQR to seek the attained optimum feedback gains. The proposed approach has not required the solution of Riccati equation enabling the excitation effect in controlling process. Employing this advantage by each of six mentioned algorithms to three-story and eight-story structures under different earthquakes led to define (1) the best solution, (2) convergence rate and (3) computational effort of all methods. The purpose of this research is to study the aforementioned methods besides the superiority of ICA in finding the optimal responses for active control problem. Numerical simulations have confirmed that the proposed controller is enabling to significantly reduce the structural responses using less control energy compared to LQR.


Active control Metaheuristic optimization algorithm Linear quadratic regulator (LQR) Discrete wavelet transform (DWT) 



  1. 1.
    Ali Toghroli et al (2014) Prediction of shear capacity of channel shear connectors using the ANFIS model. Steel Compos Struct 17(5):623–639CrossRefGoogle Scholar
  2. 2.
    Safa M et al (2016) Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength. Steel Compos Struct Int J 21(3):679–688CrossRefGoogle Scholar
  3. 3.
    Mohammadhassani M et al (2015) Fuzzy modelling approach for shear strength prediction of RC deep beams. Smart Struct Syst 16(3):497–519CrossRefGoogle Scholar
  4. 4.
    Mansouri I et al (2017) Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique. J Intell Manuf 1–11Google Scholar
  5. 5.
    Toghroli A (2015) Applications of the ANFIS and LR models in the prediction of shear connection in composite beams. Jabatan Kejuruteraan Awam, Fakulti Kejuruteraan, Universiti MalayaGoogle Scholar
  6. 6.
    Aghakhani M et al (2015) A simple modification of homotopy perturbation method for the solution of Blasius equation in semi-infinite domains. Math Prob Eng 2015:7MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Toghroli A et al (2016) Potential of soft computing approach for evaluating the factors affecting the capacity of steel–concrete composite beam. J Intell Manuf 29:1–9Google Scholar
  8. 8.
    Sadeghipour Chahnasir E et al (2018) Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors. Smart Struct Syst 22(4):413–424Google Scholar
  9. 9.
    Safa M et al (2016) Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel–concrete composite beam’s shear strength. Steel Compos Struct 21(3):679–688CrossRefGoogle Scholar
  10. 10.
    Mansouri I et al (2016) Strength prediction of rotary brace damper using MLR and MARS. Struct Eng Mech 60(3):471–488CrossRefGoogle Scholar
  11. 11.
    Toghroli A et al (2018) Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method. Comput Concr 21(5):525–530Google Scholar
  12. 12.
    Sari PA, et al (2018) An intelligent based-model role to simulate the factor of safe slope by support vector regression. Eng ComputGoogle Scholar
  13. 13.
    Sedghi Y et al (2018) Application of ANFIS technique on performance of C and L shaped angle shear connectors. Smart Struct Syst 22(3):335–340MathSciNetGoogle Scholar
  14. 14.
    Shariat M, Shariati M (2018) Computational Lagrangian multiplier method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams. Steel Compos Struct 29:243–256Google Scholar
  15. 15.
    Grandhi RV (1990) Optimum design of space structures with active and passive damping. Eng Comput 6(3):177–183CrossRefGoogle Scholar
  16. 16.
    Hadi MN, Uz ME (2015) Investigating the optimal passive and active vibration controls of adjacent buildings based on performance indices using genetic algorithms. Eng Optim 47(2):265–286MathSciNetCrossRefGoogle Scholar
  17. 17.
    Amini F, Tavassoli MR (2005) Optimal structural active control force, number and placement of controllers. Eng Struct 27(9):1306–1316CrossRefGoogle Scholar
  18. 18.
    Datta T (2003) A state-of-the-art review on active control of structures. ISET J Earthq Technol 40(1):1–17Google Scholar
  19. 19.
    Elseaidy WM, Baugh JW, Cleaveland R (1996) Verification of an active control system using temporal process algebra. Eng Comput 12(1):46–61CrossRefGoogle Scholar
  20. 20.
    Liu J, Wang Y (2008) Design approach of weighting matrices for LQR based on multi-objective evolution algorithm. In: 2008 International conference on information and automation (ICIA). IEEE, Changsha, China, pp 1188–1192Google Scholar
  21. 21.
    Wang W et al (2012) Weight optimization for LQG controller based on the artificial bee colony algorithm. AASRI Procedia 3:686–693CrossRefGoogle Scholar
  22. 22.
    Wang H, et al (2013) Optimization of LQR controller for inverted pendulum system with artificial bee colony algorithm. In: Proceedings of the 2013 international conference on advanced mechatronic systems 2013. IEEE, Louyang, China, pp 158–162Google Scholar
  23. 23.
    Bottura CP, da Fonseca Neto J (1999) Parallel eigenstructure assignment via LQR design and genetic algorithms. In: Proceedings of the 1999 American control conference. IEEE, San Diego, CA, USAGoogle Scholar
  24. 24.
    Bottura CP, da Fonseca Neto JV (2000) Rule-based decision-making unit for eigenstructure assignment via parallel genetic algorithm and LQR designs. In: Proceedings of the 2000 American control conference. IEEE, Chicago, IL, USAGoogle Scholar
  25. 25.
    Shen P (2014) Application of genetic algorithm optimization LQR weighting matrices control inverted pendulum. Appl Mech Mater 543–547:1274–1277CrossRefGoogle Scholar
  26. 26.
    Joghataie A, Mohebbi M (2012) Optimal control of nonlinear frames by Newmark and distributed genetic algorithms. Structl Des Tall Spec Build 21(2):77–95CrossRefGoogle Scholar
  27. 27.
    Petković D, Ćojbašič Ž, Nikolić V (2013) Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation. Renew Sustain Energy Rev 28:191–195CrossRefGoogle Scholar
  28. 28.
    Petković D et al (2014) Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission. Energy 64:868–874CrossRefGoogle Scholar
  29. 29.
    Petković D et al (2014) Adapting project management method and ANFIS strategy for variables selection and analyzing wind turbine wake effect. Nat Hazards 74(2):463–475CrossRefGoogle Scholar
  30. 30.
    Nikoli V et al (2017) Wind speed parameters sensitivity analysis based on fractals and neuro-fuzzy selection technique. Knowl Inf Syst 52(1):255–265CrossRefGoogle Scholar
  31. 31.
    Petković D, Pavlović NT, Ćojbašić Ž (2016) Wind farm efficiency by adaptive neuro-fuzzy strategy. Int J Electr Power Energy Syst 81:215–221CrossRefGoogle Scholar
  32. 32.
    Bishop J, Striz A (2004) On using genetic algorithms for optimum damper placement in space trusses. Struct Multidiscip Optim 28(2–3):136–145Google Scholar
  33. 33.
    Singh MP, Moreschi LM (2002) Optimal placement of dampers for passive response control. Earthq Eng Struct Dyn 31(4):955–976CrossRefGoogle Scholar
  34. 34.
    Cha Y-J et al (2012) Multi-objective genetic algorithms for cost-effective distributions of actuators and sensors in large structures. Expert Syst Appl 39(9):7822–7833CrossRefGoogle Scholar
  35. 35.
    Amini F, Hazaveh NK, Rad AA (2013) Wavelet PSO-based LQR algorithm for optimal structural control using active tuned mass dampers. Comput-Aid Civ Infrastruct Eng 28(7):542–557CrossRefGoogle Scholar
  36. 36.
    Aghajanian S et al (2014) Optimal control of steel structures by improved particle swarm. Int J Steel Struct 14(2):223–230CrossRefGoogle Scholar
  37. 37.
    Amini F, Ghaderi P (2012) Optimal locations for MR dampers in civil structures using improved Ant Colony algorithm. Opt Control Appl Methods 33(2):232–248MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Bekdaş G, Nigdeli SM (2011) Estimating optimum parameters of tuned mass dampers using harmony search. Eng Struct 33(9):2716–2723CrossRefGoogle Scholar
  39. 39.
    Amini F, Ghaderi P (2013) Hybridization of harmony search and ant colony optimization for optimal locating of structural dampers. Appl Soft Comput 13(5):2272–2280CrossRefGoogle Scholar
  40. 40.
    Aydin E (2012) Optimal damper placement based on base moment in steel building frames. J Constr Steel Res 79:216–225CrossRefGoogle Scholar
  41. 41.
    Mohebbi M, Joghataie A (2012) Designing optimal tuned mass dampers for nonlinear frames by distributed genetic algorithms. Struct Des Tall Spec Build 21(1):57–76CrossRefGoogle Scholar
  42. 42.
    Zarbaf SEHAM et al (2017) Stay cable tension estimation of cable-stayed bridges using genetic algorithm and particle swarm optimization. J Bridge Eng 22(10):05017008CrossRefGoogle Scholar
  43. 43.
    Chen X et al (2018) Prediction of shear strength for squat RC walls using a hybrid ANN–PSO model. Eng Comput 34(2):367–383CrossRefGoogle Scholar
  44. 44.
    Tian H, Shu J, Han L (2018) The effect of ICA and PSO on ANN results in approximating elasticity modulus of rock material. Eng Comput 35:1–10CrossRefGoogle Scholar
  45. 45.
    Sierra MR, Coello CAC (2005) Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. In: International conference on evolutionary multi-criterion optimization. Springer, New YorkGoogle Scholar
  46. 46.
    Leung A, Zhang H (2009) Particle swarm optimization of tuned mass dampers. Eng Struct 31(3):715–728CrossRefGoogle Scholar
  47. 47.
    Özsarıyıldız ŞS, Bozer A (2015) Finding optimal parameters of tuned mass dampers. Struct Des Tall Spec Build 24(6):461–475CrossRefGoogle Scholar
  48. 48.
    Bagheri A, Amini F (2013) Control of structures under uniform hazard earthquake excitation via wavelet analysis and pattern search method. Struct Control Health Monit 20(5):671–685CrossRefGoogle Scholar
  49. 49.
    Amini F, Bagheri A (2014) Optimal control of structures under earthquake excitation based on the colonial competitive algorithm. Struct Des Tall Spec Build 23(7):500–511CrossRefGoogle Scholar
  50. 50.
    Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35CrossRefGoogle Scholar
  51. 51.
    Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, New York, pp 65–74Google Scholar
  52. 52.
    Varaee H, Ghasemi MR (2017) Engineering optimization based on ideal gas molecular movement algorithm. Eng Comput 33(1):71–93CrossRefGoogle Scholar
  53. 53.
    Ghasemi MR, Varaee H (2017) A fast multi-objective optimization using an efficient ideal gas molecular moment algorithm. Eng Comput 33(3):477–496CrossRefGoogle Scholar
  54. 54.
    Gendreau M, Potvin J-Y (2010) Handbook of metaheuristics, vol 2. Springer, New YorkzbMATHCrossRefGoogle Scholar
  55. 55.
    Yang X-S (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29(2):175–184CrossRefGoogle Scholar
  56. 56.
    Ohtori Y et al (2004) Benchmark control problems for seismically excited nonlinear buildings. J Eng Mech 130(4):366–385CrossRefGoogle Scholar
  57. 57.
    Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE Congress on evolutionary computation (CEC). IEEE, Singapore, pp 4661–4667Google Scholar
  58. 58.
    Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Pham D, et al (2005) The bees algorithm. Technical note. Manufacturing Engineering Centre, Cardiff University, UK, pp 1–57Google Scholar
  60. 60.
    Yang X-S (2008) Firefly algorithm. In: Nature-inspired metaheuristic algorithms. Luniver Press, pp 79–90Google Scholar
  61. 61.
    Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Javad Katebi
    • 1
    Email author
  • Mona Shoaei-parchin
    • 1
  • Mahdi Shariati
    • 2
  • Nguyen Thoi Trung
    • 3
    • 4
  • Majid Khorami
    • 5
  1. 1.Faculty of Civil EngineeringUniversity of TabrizTabrizIran
  2. 2.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  3. 3.Division of Computational Mathematics and Engineering, Institute for Computational ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.Faculty of Civil EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Facultad de Arquitectura y UrbanismoUniversidad UTEQuitoEcuador

Personalised recommendations