Advertisement

Engineering with Computers

, Volume 35, Issue 2, pp 593–604 | Cite as

Analysis and optimal design of scissor-link foldable structures

  • A. KavehEmail author
  • M. Abedi
Original Article

Abstract

This paper presents a finite element method for the analysis of scissor-link foldable structures. These structures are capable of deforming from compact form to expanded form, and vice versa. Due to their complex mechanism, it is difficult and time-consuming to simulate foldable structures in analysis softwares, while the proposed method of this paper makes it easy to perform the analysis in a simple manner. In addition, this paper uses two different multi-objective meta-heuristic algorithms, NSGAII and MOCBO, to perform optimum design of foldable structures. The purpose is to find designs that result in minimum weight and minimum volume of the structures satisfying all the constraints consisting of maximum stress, elements buckling, and permissible displacement.

Keywords

Scissor-link foldable structures Finite elements analysis Optimal design Meta-heuristic algorithms 

Notes

References

  1. 1.
    Mira LA, Thrall AP, De Temmerman N (2014) Deployable scissor arch for transitional shelters. Autom Construct 43:123–131.  https://doi.org/10.1016/j.autcon.2014.03.014 CrossRefGoogle Scholar
  2. 2.
    Shan W (1992) Computer analysis of foldable structures. Comput Struct 42(6):903–912.  https://doi.org/10.1016/0045-7949(92)90102-6 CrossRefzbMATHGoogle Scholar
  3. 3.
    Kaveh A, Davaran A (1996) Analysis of pantograph foldable structures. Comput Struct 59(1):131–140.  https://doi.org/10.1016/0045-7949(95)00231-6 CrossRefzbMATHGoogle Scholar
  4. 4.
    Escrig F (1985) Expandable space structures. Int J Space Struct 1(2):79–91.  https://doi.org/10.1177/026635118500100203 CrossRefGoogle Scholar
  5. 5.
    Hernandez C, Transformables E, Estran I (1988) Geometry of expanable structures. In: Tecnologia y Construction, vol. 4, pp 103–118 (Caracas)Google Scholar
  6. 6.
    Escrig F, Valcarcel JP (1993) Geometry of expandable space structures. Int J Space Struct 8(1–2):71–84.  https://doi.org/10.1177/0266351193008001-208 CrossRefGoogle Scholar
  7. 7.
    Escrig F, Sanchez J, Valcarcel JP (1996) Two way deployable spherical grids. Int J Space Struct 11(1–2):257–274.  https://doi.org/10.1177/026635119601-231 CrossRefGoogle Scholar
  8. 8.
    Escrig F, Sanchez J (2006) New designs and geometries of deployable scissor structures. In: Proceedings of Adaptables2006, TU/e, international conference on adaptable building structures Eindhoven (The Netherlands), pp 5–18Google Scholar
  9. 9.
    Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 139:18–27.  https://doi.org/10.1016/j.compstruc.2014.04.005 CrossRefGoogle Scholar
  10. 10.
    Kaveh A, Ilchi Ghazaan M (2017) A new meta-heuristic algorithm: vibrating particles system. Scientia Iranica Trans A Civ Eng 24(2):551–566CrossRefzbMATHGoogle Scholar
  11. 11.
    Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110: 69–84.  https://doi.org/10.1016/j.advengsoft.2017.03.014 CrossRefGoogle Scholar
  12. 12.
    Kaveh A, Jafarvand A, Barkhordari MA (1999) Optimal design of pantograph foldable structures. Int J Space Struct 14(4):295–302.  https://doi.org/10.1260/0266351991494911 CrossRefGoogle Scholar
  13. 13.
    Kaveh A, Shojaee S (2004) Optimal design of scissor-link foldable structures using genetic algorithms. Paper 94 from CCP: 80. ISBN:0-948749-98-9Google Scholar
  14. 14.
    Kaveh A, Shojaee S (2007) Optimal design of scissor-link foldable structures using ant colony optimization algorithm. Comput Aided Civ Infrastruct Eng 22(1):56–64.  https://doi.org/10.1111/j.1467-8667.2006.00470.x CrossRefGoogle Scholar
  15. 15.
    Alegria Mira L, Thrall AP, De Temmerman N (2016) The universal scissor component: optimization of a reconfigurable component for deployable scissor structures. Eng Optim 48(2):317–333.  https://doi.org/10.1080/0305215X.2015.1011151 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Thrall AP, Zhu M, Guest JK, Paya-Zaforteza I, Adriaenssens S (2012) Structural optimization of deploying structures composed of linkages. J Comput Civ Eng 28(3):04014010.  https://doi.org/10.1061/(ASCE)CP.1943-5487.0000272 CrossRefGoogle Scholar
  17. 17.
    Koumar A, Tysmans T, De Temmerman N, Coelho RF, Mira LA (2014) Multi-criteria optimization of a barrel vault structure for emergency relief. In: Proceedings of the symposium: shells, membranes and spatial structures: footprints (IASS-SLTE’14)Google Scholar
  18. 18.
    Koumar A, Tysmans T, Filomeno Coelho R, De Temmerman N (2017) An automated structural optimisation methodology for scissor structures using a genetic algorithm. Appl Comput Intell Soft Comput.  https://doi.org/10.1155/2017/6843574 2017.Google Scholar
  19. 19.
    Deb K, Pratap A, Agarwal S, Meyarivan TAMT. (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197.  https://doi.org/10.1109/4235.996017 CrossRefGoogle Scholar
  20. 20.
    Panda A, Pani S (2016) Multi-objective colliding bodies optimization. In: Proceedings of fifth international conference on soft computing for problem solving. Springer, Singapore, pp 651–664.  https://doi.org/10.1007/978-981-10-0448-3_54
  21. 21.
    Kaveh A, Ilchi Ghazaan M (2014) Computer codes for colliding bodies optimization and its enhanced version. Int J Optim Civ Eng 4(3):321–332Google Scholar
  22. 22.
    Gantes CJ, Connor JJ, Logcher RD, Rosenfeld Y (1989) Structural analysis and design of deployable structures. Comput Struct 32(3–4):661–669.  https://doi.org/10.1016/0045-7949 (89)90354-4CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre of Excellence for Fundamental Studies in Structural Engineering, School of Civil EngineeringIran University of Science and TechnologyTehran-16Iran

Personalised recommendations