Advertisement

Engineering with Computers

, Volume 35, Issue 2, pp 499–517 | Cite as

Topology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing vehicle search algorithms

  • Ghanshyam G. TejaniEmail author
  • Vimal J. Savsani
  • Sujin Bureerat
  • Vivek K. Patel
  • Poonam Savsani
Original Article

Abstract

Three modified versions of passing vehicle search (PVS) are proposed and tested on truss topology optimization with static and dynamic constraints. PVS works on the mechanism of passing a vehicle on a two-lane highway. The heuristic nature of PVS allows the search to jump into non-visited regions (exploration) and also permits a local search of visited regions (exploitation). First, the original PVS algorithm is improved to avoid a local optima trap using a novel parallel run mechanism. Then, population diversity is improved by incorporating the selection of simulated annealing. The various versions of PVS are verified on the truss design problems. Comparative results show that the parallel run concept improves the original PVS algorithm. The selection using the Boltzmann probability as used in simulated annealing further improves the algorithm.

Keywords

Modified algorithm Parallel computing Metaheuristic Structural optimization Static and dynamic constraints Buckling Frequency 

Notes

References

  1. 1.
    Ahrari A, Atai AA, Deb K (2015) Simultaneous topology, shape and size optimization of truss structures by fully stressed design based on evolution strategy. Eng Optim 47:37–41.  https://doi.org/10.1080/0305215X.2014.947972 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cheng MY, Prayogo D (2017) A novel fuzzy adaptive teaching-learning-based optimization (FATLBO) for solving structural optimization problems. Eng Comput 33:55–69.  https://doi.org/10.1007/s00366-016-0456-z CrossRefGoogle Scholar
  3. 3.
    Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37:447–465.  https://doi.org/10.1016/S0168-874X(00)00057-3 CrossRefzbMATHGoogle Scholar
  4. 4.
    Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35.  https://doi.org/10.1007/s00366-011-0241-y CrossRefGoogle Scholar
  5. 5.
    Ponterosso P, Fox DSJ (1999) Heuristically seeded genetic algorithms applied to truss optimisation. Eng Comput 15:345–355.  https://doi.org/10.1007/s003660050029 CrossRefGoogle Scholar
  6. 6.
    Ringertz ULFT. (1986) A branch and bound algorithm for topology optimization of truss structures. Eng Optim 10:111–124.  https://doi.org/10.1080/03052158608902532 CrossRefGoogle Scholar
  7. 7.
    Tejani GG, Savsani VJ, Bureerat S, Patel VK (2018) Topology and size optimization of trusses with static and dynamic bounds by modified symbiotic organisms search. J Comput Civ Eng 32:1–11.  https://doi.org/10.1061/(ASCE)CP.1943-5487.0000741 CrossRefGoogle Scholar
  8. 8.
    Tejani GG, Savsani VJ, Patel VK, Mirjalili S (2018) An improved heat transfer search algorithm for unconstrained optimization problems. J Comput Des Eng.  https://doi.org/10.1016/j.jcde.2018.04.003 Google Scholar
  9. 9.
    Kaveh A, Zolghadr A (2013) Topology optimization of trusses considering static and dynamic constraints using the CSS. Appl Soft Comput J 13:2727–2734.  https://doi.org/10.1016/j.asoc.2012.11.014 CrossRefGoogle Scholar
  10. 10.
    Jin P, De-yu W (2006) Topology optimization of truss structure with fundamental frequency and frequency domain dynamic response constraints. Acta Mech Solida Sin 19:231–240.  https://doi.org/10.1007/s10338-006-0628-2 CrossRefGoogle Scholar
  11. 11.
    Noilublao N, Bureerat S (2011) Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms. Comput Struct 89:2531–2538.  https://doi.org/10.1016/j.compstruc.2011.08.010 CrossRefGoogle Scholar
  12. 12.
    Savsani VJ, Tejani GG, Patel VK (2016) Truss topology optimization with static and dynamic constraints using modified subpopulation teaching–learning-based optimization. Eng Optim 48:1–17.  https://doi.org/10.1080/0305215X.2016.1150468 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Xu B, Jiang J, Tong W, Wu K (2003) Topology group concept for truss topology optimization with frequency constraints. J Sound Vib 261:911–925.  https://doi.org/10.1016/S0022-460X(02)01021-0 CrossRefGoogle Scholar
  14. 14.
    Kaveh A, Zolghadr A (2014) Democratic PSO for truss layout and size optimization with frequency constraints. Comput Struct 130:10–21.  https://doi.org/10.1016/j.compstruc.2013.09.002 CrossRefGoogle Scholar
  15. 15.
    Tejani GG, Savsani VJ, Patel VK (2016) Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. J Comput Des Eng 3:226–249.  https://doi.org/10.1016/j.jcde.2016.02.003 Google Scholar
  16. 16.
    Tejani GG, Savsani VJ, Patel VK (2016) Modified sub-population teaching-learning-based optimization for design of truss structures with natural frequency constraints. Mech Based Des Struct Mach 44:495–513.  https://doi.org/10.1080/15397734.2015.1124023 CrossRefGoogle Scholar
  17. 17.
    Nakamura T, Ohsaki M (1992) A natural generator of optimum topology of plane trusses for specified fundamental-frequency. Comput Methods Appl Mech Eng 94:113–129.  https://doi.org/10.1016/0045-7825(92)90159-h CrossRefzbMATHGoogle Scholar
  18. 18.
    Achtziger W (1999) Local stability of trusses in the context of topology optimization. Part I: exact modelling. Struct Optim 17:235–246.  https://doi.org/10.1007/s001580050056 Google Scholar
  19. 19.
    Achtziger W (1999) Local stability of trusses in the context of topology optimization part II: a numerical approach. Struct Optim 17:247–258.  https://doi.org/10.1007/s001580050056 Google Scholar
  20. 20.
    Rozvany GIN (1996) Difficulties in truss topology optimization with stress and local buckling constraints. Struct Optim 11:134–136CrossRefGoogle Scholar
  21. 21.
    Stolpe M, Svanberg K (2003) A note on stress-constrained truss topology optimization. Struct Multidiscip Optim 25:62–64.  https://doi.org/10.1007/s00158-002-0273-4 CrossRefzbMATHGoogle Scholar
  22. 22.
    Zhou M (1996) Difficulties in truss topology optimization with stress and local buckling constraints. Struct Optim 11:134–136CrossRefGoogle Scholar
  23. 23.
    Savsani P, Savsani V (2016) Passing vehicle search (PVS): a novel metaheuristic algorithm. Appl Math Model 40:3951–3978.  https://doi.org/10.1016/j.apm.2015.10.040 CrossRefGoogle Scholar
  24. 24.
    Savsani VJ, Tejani GG, Patel VK, Savsani P (2017) Modified meta-heuristics using random mutation for truss topology optimization with static and dynamic constraints. J Comput Des Eng 4:106–130.  https://doi.org/10.1080/0305215X.2016.1150468 Google Scholar
  25. 25.
    Tejani GG, Savsani VJ, Patel VK, Savsani PV (2018) Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics. J Comput Des Eng 5:198–214.  https://doi.org/10.1016/j.jcde.2017.10.001 Google Scholar
  26. 26.
    Kirsch U (1989) Optimal topologies of truss structures. Comput Methods Appl Mech Eng 72:15–28.  https://doi.org/10.1016/0045-7825(89)90119-9 doiMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ho-Huu V, Nguyen-Thoi T, Nguyen-Thoi MH, Le-Anh L (2015) An improved constrained differential evolution using discrete variables (D-ICDE) for layout optimization of truss structures. Expert Syst Appl 42:7057–7069.  https://doi.org/10.1016/j.eswa.2015.04.072 CrossRefGoogle Scholar
  28. 28.
    Farshchin M, Camp CV, Maniat M (2017) Optimal design of truss structures for size and shape with frequency constraints using a collaborative optimization strategy. Expert Syst Appl 66:203–218.  https://doi.org/10.1016/j.eswa.2016.09.012 CrossRefGoogle Scholar
  29. 29.
    Gomes HM (2011) Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Syst Appl 38:957–968.  https://doi.org/10.1016/j.eswa.2010.07.086 CrossRefGoogle Scholar
  30. 30.
    Li L, Liu F (2011) Group search optimization for applications in structural design, adaptation, learning, and optimization. Springer, Berlin.  https://doi.org/10.1007/978-3-642-20536-1 CrossRefGoogle Scholar
  31. 31.
    Pholdee N, Bureerat S (2014) Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints. Adv Eng Softw 75:1–13.  https://doi.org/10.1016/j.advengsoft.2014.04.005 CrossRefGoogle Scholar
  32. 32.
    Kaveh A, Mahdavi VR (2015) Two-dimensional colliding bodies algorithm for optimal design of truss structures. Adv Eng Softw 83:70–79.  https://doi.org/10.1016/j.advengsoft.2015.01.007 CrossRefGoogle Scholar
  33. 33.
    Ohsaki M, Fujisawa K, Katoh N, Kanno Y (1999) Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints. Comput Methods Appl Mech Eng 180:203–217.  https://doi.org/10.1016/S0045-7825(99)00056-0 CrossRefzbMATHGoogle Scholar
  34. 34.
    Miguel LFF, Lopez RH, Miguel LFF (2013) Multimodal size, shape, and topology optimisation of truss structures using the Firefly algorithm. Adv Eng Softw 56:23–37.  https://doi.org/10.1016/j.advengsoft.2012.11.006 CrossRefGoogle Scholar
  35. 35.
    Kaveh A, Ahmadi B (2014) Sizing, geometry and topology optimization of trusses using force method and supervised charged system search. Struct Eng Mech 50:365–382.  https://doi.org/10.12989/sem.2014.50.3.365 CrossRefGoogle Scholar
  36. 36.
    Kaveh A, Hassani B, Shojaee S, Tavakkoli SM (2008) Structural topology optimization using ant colony methodology. Eng Struct 30:2559–2565.  https://doi.org/10.1016/j.engstruct.2008.02.012 CrossRefGoogle Scholar
  37. 37.
    Kaveh A, Zolghadr A (2014) Comparison of nine meta-heuristic algorithms for optimal design of truss structures with frequency constraints. Adv Eng Softw 76:9–30.  https://doi.org/10.1016/j.advengsoft.2014.05.012 CrossRefGoogle Scholar
  38. 38.
    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680.  https://doi.org/10.1126/science.220.4598.671 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, School of EngineeringRK UniversityRajkotIndia
  2. 2.Department of Mechanical EngineeringPandit Deendayal Petroleum UniversityGandhinagarIndia
  3. 3.Department of Mechanical Engineering, Faculty of EngineeringKhon Kaen UniversityKhon KaenThailand
  4. 4.Department of Industrial EngineeringPandit Deendayal Petroleum UniversityGandhinagarIndia

Personalised recommendations