Subspaces of Frequently Hypercyclic Functions for Sequences of Composition Operators

  • L. Bernal-González
  • M. C. Calderón-Moreno
  • A. Jung
  • J. A. Prado-BassasEmail author


In this paper, a criterion for a sequence of composition operators defined on the space of holomorphic functions in a complex domain to be frequently hypercyclic is provided. Such a criterion improves some already known special cases, and, in addition, it is also valid to provide dense vector subspaces as well as large closed ones consisting entirely, except for zero, of functions that are frequently hypercyclic.


Hypercyclic sequence of operators Composition operator Frequent hypercyclicity Holomorphic function Lineability 

Mathematics Subject Classification

30E10 47B33 47A16 47B38 



The first, second, and fourth authors have been partially supported by Plan Andaluz de Investigación de la Junta de Andalucía FQM-127 Grant P08-FQM-03543 and by MEC Grant MTM2015-65242-C2-1-P. The third author has been supported by DFG-Forschungsstipendium JU 3067/1-1.


  1. 1.
    Ahlfors, L.V.: Complex Analysis, vol. 3. McGraw-Hill, London (1979)zbMATHGoogle Scholar
  2. 2.
    Aron, R.M., Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Lineability: The Search for Linearity in Mathematics. CRC Press, Boca Raton (2016)zbMATHGoogle Scholar
  3. 3.
    Bayart, F., Grivaux, S.: Hypercyclicité: le rôle du spectre ponctuel unimodulaire. C. R. Math. Acad. Sci. Paris 338, 703–708 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bayart, F., Grivaux, S.: Frequently hypercyclic operators. Trans. Am. Math. Soc. 358, 5083–5117 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bayart, F., Matheron, E.: Dynamics of Linear Operators, Cambridge Tracts in Mathematics 179. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Beauzamy, B.: Introduction to Banach Spaces and Their Geometry. North Holland Publishing Co., Amsterdam (1982)zbMATHGoogle Scholar
  7. 7.
    Bernal-González, L.: Densely hereditarily hypercyclic sequences and large hypercyclic manifolds. Proc. Am. Math. Soc. 127, 3279–3285 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bernal-González, L.: Linear structure of weighted holomorphic non-extendibility. Bull. Austral. Math. Soc. 73, 335–344 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bernal-González, L.: Compositionally universal entire functions on the plane and the punctured plane. Complex Anal. Oper. Theory 7, 577–592 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bernal-González, L., Montes-Rodríguez, A.: Universal functions for composition operators. Complex Var. Theory Appl. 27(1), 47–56 (1995)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bernal-González, L., Montes-Rodríguez, A.: Non-finite dimensional closed vector spaces of universal functions for composition operators. J. Approx. Theory 82(3), 375–391 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bernal-González, L., Ordóñez Cabrera, M.: Lineability criteria, with applications. J. Funct. Anal. 266(6), 3997–4025 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. (N.S.) 51(1), 71–130 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bès, J.P.: Invariant manifolds of hypercyclic vectors for the real scalar case. Proc. Am. Math. Soc. 127(6), 1801–1804 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bès, J.P.: Dynamics of composition operators with holomorphic symbol. Rev. Real Acad. Cien. Ser. A Mat. 107, 437–449 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bès, J.P., Menet, Q., Peris, A., Puig, Y.: Recurrence properties of hypercyclic operators. Math. Ann. 366(1–2), 545–572 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Birkhoff, G.D.: Démonstration d’un théorème élémentaire sur les fonctions entières. C. R. Acad. Sci. Paris 189, 473–475 (1929)zbMATHGoogle Scholar
  18. 18.
    Bonilla, A., Grosse-Erdmann, K.G.: Frequently hypercyclic operators and vectors. Ergod. Theory Dynam. Sys. 27, 383–404 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bonilla, A., Grosse-Erdmann, K.G.: Frequently hypercyclic subspaces. Mon. Math. 168, 305–320 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bourdon, P.S.: Invariant manifolds of hypercyclic operators. Proc. Am. Math. Soc. 118(3), 845–847 (1993)CrossRefzbMATHGoogle Scholar
  21. 21.
    Diestel, J.: Sequences and Series in Banach Spaces. Springer, New York (1984)CrossRefzbMATHGoogle Scholar
  22. 22.
    Gaier, D.: Lectures on Complex Approximation. Birkhäuser, Basel (1987)CrossRefzbMATHGoogle Scholar
  23. 23.
    Grosse-Erdmann, K.-G., Mortini, R.: Universal functions for composition operators with nonautomorphic symbol. J. Anal. Math. 107, 355–376 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Grosse-Erdmann, K.-G., Peris, A.: Linear Chaos. Springer, London (2011)CrossRefzbMATHGoogle Scholar
  25. 25.
    Henrici, P.: Applied and Computational Complex Analysis, vol. 3. Wiley, New York (1986)zbMATHGoogle Scholar
  26. 26.
    Herrero, D.: Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99(1), 179–190 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Menet, Q.: Hereditarily hypercyclic subspaces. J. Oper. Theory 73(2), 385–405 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Montes-Rodríguez, A.: Banach spaces of hypercyclic vectors. Mich. Math. J. 43(3), 419–436 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Nersesjan, A.A.: Carleman sets. Izv. Akad. Nauk Armyan. SSR Ser. Mat. 6, 465–471 (1971). (in Russian) MathSciNetGoogle Scholar
  30. 30.
    Remmert, R.: Funktionentheorie II. Springer, Berlin (1991)CrossRefzbMATHGoogle Scholar
  31. 31.
    Rudin, W.: Real and Complex Analysis, vol. 3. McGraw-Hill Book Co., New York (1987)zbMATHGoogle Scholar
  32. 32.
    Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, Berlin (1993)CrossRefzbMATHGoogle Scholar
  33. 33.
    Shapiro, J.H.: Notes on the dynamics of linear operators. Unpublished Lecture Notes (2001).
  34. 34.
    Shkarin, S.A.: On the spectrum of frequently hypercyclic operators. Proc. Am. Math. Soc. 137, 123–134 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wengenroth, J.: Hypercyclic operators on nonlocally convex spaces. Proc. Am. Math. Soc. 131, 1759–1761 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. Bernal-González
    • 1
  • M. C. Calderón-Moreno
    • 1
  • A. Jung
    • 2
  • J. A. Prado-Bassas
    • 3
    Email author
  1. 1.Departamento de Análisis Matemático, Instituto de Matemáticas Antonio de Castro Brzezicki (IMUS), Facultad de MatemáticasUniversidad de SevillaSevillaSpain
  2. 2.Fachbereich IV MathematikUniversität TrierTrierGermany
  3. 3.Departamento de Análisis Matemático Facultad de MatemáticasUniversidad de SevillaSevillaSpain

Personalised recommendations