Advertisement

Condensers with Touching Plates and Constrained Minimum Riesz and Green Energy Problems

  • P. D. Dragnev
  • B. Fuglede
  • D. P. Hardin
  • E. B. Saff
  • N. ZoriiEmail author
Article
  • 15 Downloads

Abstract

We study minimum energy problems relative to the \(\alpha \)-Riesz kernel \(|x-y|^{\alpha -n}\), \(\alpha \in (0,2]\), over signed Radon measures \(\mu \) on \({\mathbb {R}}^n\), \(n\geqslant 3\), associated with a generalized condenser \((A_1,A_2)\), where \(A_1\) is a relatively closed subset of a domain D and \(A_2={\mathbb {R}}^n\setminus D\). We show that although \(A_2\cap {\mathrm {Cl}}_{{\mathbb {R}}^n}A_1\) may have nonzero capacity, this minimum energy problem is uniquely solvable (even in the presence of an external field) if we restrict ourselves to \(\mu \) with \(\mu ^+\leqslant \xi \), where a constraint \(\xi \) is properly chosen. We establish the sharpness of the sufficient conditions on the solvability thus obtained, provide descriptions of the weighted \(\alpha \)-Riesz potentials of the solutions, single out their characteristic properties, and analyze their supports. The approach developed is mainly based on the establishment of an intimate relationship between the constrained minimum \(\alpha \)-Riesz energy problem over signed measures associated with \((A_1,A_2)\) and the constrained minimum \(\alpha \)-Green energy problem over positive measures carried by \(A_1\). The results are illustrated by examples.

Keywords

Constrained minimum energy problems \(\alpha \)-Riesz kernels \(\alpha \)-Green kernels External fields Condensers with touching plates 

Mathematics Subject Classification

31C15 

Notes

Acknowledgements

The authors express their sincere gratitude to the anonymous referees for valuable suggestions, helping us improve the exposition of the paper.

References

  1. 1.
    Armitage, D.H., Gardiner, S.J.: Classical Potential Theory. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Beckermann, B., Gryson, A.: Extremal rational functions on symmetric discrete sets and superlinear convergence of the ADI method. Constr. Approx. 32, 393–428 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bliednter, J., Hansen, W.: Potential Theory: An Analytic and Probabilistic Approach to Balayage. Springer, Berlin (1986)Google Scholar
  4. 4.
    Bourbaki, N.: Elements of Mathematics: General Topology. Chapters 1–4. Springer, Berlin (1989)zbMATHGoogle Scholar
  5. 5.
    Bourbaki, N.: Elements of Mathematics: Integration. Chapters 1–6. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Brelot, M.: On Topologies and Boundaries in Potential Theory. Lecture Notes in Mathematics, vol. 175. Springer, Berlin (1971)CrossRefGoogle Scholar
  7. 7.
    Cartan, H.: Théorie du potentiel newtonien: énergie, capacité, suites de potentiels. Bull. Soc. Math. Fr. 73, 74–106 (1945)CrossRefzbMATHGoogle Scholar
  8. 8.
    Deny, J.: Les potentiels d’énergie finie. Acta Math. 82, 107–183 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Deny, J.: Sur la définition de l’énergie en théorie du potentiel. Ann. Inst. Fourier Grenoble 2, 83–99 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dragnev, P.D., Fuglede, B., Hardin, D.P., Saff, E.B., Zorii, N.: Minimum Riesz energy problems for a condenser with touching plates. Potential Anal. 44, 543–577 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dragnev, P.D., Fuglede, B., Hardin, D.P., Saff, E.B., Zorii, N.: Constrained minimum Riesz energy problems for a condenser with intersecting plates. J. Anal. Math. arXiv:1710.01950 (2017)
  12. 12.
    Edwards, R.: Functional Analysis: Theory and Applications. Holt, Rinehart and Winston, New York (1965)zbMATHGoogle Scholar
  13. 13.
    Fuglede, B.: On the theory of potentials in locally compact spaces. Acta Math. 103, 139–215 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fuglede, B.: Capacity as a sublinear functional generalizing an integral. Mat. Fys. Medd. Dan. Vid. Selsk. 38(7) (1971)Google Scholar
  15. 15.
    Fuglede, B.: Symmetric function kernels and sweeping of measures. Anal. Math. 42, 225–259 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fuglede, B., Zorii, N.: Green kernels associated with Riesz kernels. Ann. Acad. Sci. Fenn. Math. 43, 121–145 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fuglede, B., Zorii, N.: An alternative concept of Riesz energy of measures with application to generalized condensers. Potential Anal. (2018).  https://doi.org/10.1007/s11118-018-9709-3
  18. 18.
    Harbrecht, H., Wendland, W.L., Zorii, N.: Riesz minimal energy problems on \(C^{k-1, k}\)-manifolds. Math. Nachr. 287, 48–69 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Landkof, N.S.: Foundations of Modern Potential Theory. Springer, Berlin (1972)CrossRefzbMATHGoogle Scholar
  20. 20.
    Of, G., Wendland, W.L., Zorii, N.: On the numerical solution of minimal energy problems. Complex Var. Elliptic Equ. 55, 991–1012 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ohtsuka, M.: On potentials in locally compact spaces. J. Sci. Hiroshima Univ. Ser. A-1 25, 135–352 (1961)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Zorii, N.: Interior capacities of condensers in locally compact spaces. Potential Anal. 35, 103–143 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zorii, N.: Constrained energy problems with external fields for vector measures. Math. Nachr. 285, 1144–1165 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zorii, N.: Equilibrium problems for infinite dimensional vector potentials with external fields. Potential Anal. 38, 397–432 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zorii, N.: Necessary and sufficient conditions for the solvability of the Gauss variational problem for infinite dimensional vector measures. Potential Anal. 41, 81–115 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. D. Dragnev
    • 1
  • B. Fuglede
    • 2
  • D. P. Hardin
    • 3
  • E. B. Saff
    • 3
  • N. Zorii
    • 4
    Email author
  1. 1.Department of Mathematical SciencesPurdue University Fort WayneFort WayneUSA
  2. 2.Department of Mathematical SciencesUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Mathematics, Center for Constructive ApproximationVanderbilt UniversityNashvilleUSA
  4. 4.Institute of Mathematics of National Academy of Sciences of UkraineKiev-4Ukraine

Personalised recommendations