The Projective Ensemble and Distribution of Points in Odd-Dimensional Spheres



We consider a determinantal point process on the complex projective space that reduces to the so-called spherical ensemble for complex dimension 1 under identification of the 2-sphere with the Riemann sphere. Through this determinantal point process, we propose a new point processs in odd-dimensional spheres that produces fairly well-distributed points, in the sense that the expected value of the Riesz 2-energy for these collections of points is smaller than all previously known bounds.


Determinantal point processes Minimal Riesz energy Minimal Green energy 

Mathematics Subject Classification

Primary 31C12 Secondary 31C20 52A40 



We thank Joaquim Ortega-Cerdá and an anonymous referee for helpful comments.


  1. 1.
    Alishahi, K., Zamani, M.: The spherical ensemble and uniform distribution of points on the sphere. Electron. J. Probab. 20, 23–27 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Beltrán, C., Marzo, J., Ortega-Cerdà, J.: Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres. J. Complexity 37, 76–109 (2016)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Beltrán, C., Corral, N., Criado del Rey, J.G.: Discrete and continuous green energy on compact manifolds. arXiv:1702.00864 [math.DG]
  4. 4.
    Berman, R.J.: Determinantal point processes and fermions on complex manifolds: large deviations and bosonization. Commun. Math. Phys. 327(1), 1–47 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bétermin, L., Sandier, E.: Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere. Constr. Approx. 47(1), 39–74 (2018)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Borodachov, S.V., Hardin, D.P., Saff, E.B.: Minimal Discrete Energy on the Sphere and Other Manifolds. Springer, Berlin (to appear)Google Scholar
  7. 7.
    Brauchart, J.S.: About the second term of the asymptotics for optimal Riesz energy on the sphere in the potential-theoretical case. Integr. Transforms Spec. Funct. 17(5), 321–328 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Brauchart, J.S., Grabner, P.J.: Distributing many points on spheres: minimal energy and designs. J. Complexity 31(3), 293–326 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brauchart, J.S., Hardin, D.P., Saff, E.B.: The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N. Bull. Lond. Math. Soc. 41(4), 621–633 (2009). MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Brauchart, J.S., Hardin, D.P., Saff, E.B.: The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. In: Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications, pp. 31–61 (2012).
  11. 11.
    Doohovskoy, A.P., Landkof, N.S.: Foundations of Modern Potential Theory. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2011)Google Scholar
  12. 12.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products, 8th edn. Elsevier /Academic Press, Amsterdam (2015) (Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Revised from the seventh edition)Google Scholar
  13. 13.
    Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes, University Lecture Series, vol. 51. American Mathematical Society, Providence, RI (2009)MATHGoogle Scholar
  14. 14.
    Krishnapur, M.: From random matrices to random analytic functions. Ann. Probab. 37(1), 314–346 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kuijlaars, A.B.J., Saff, E.B.: Asymptotics for minimal discrete energy on the sphere. Trans. Am. Math. Soc. 350(2), 523–538 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Macchi, O.: The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7, 83–122 (1975)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1(6), 647–662 (1994)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Sandier, E., Serfaty, S.: 2D Coulomb gases and the renormalized energy. Ann. Probab. 43(4), 2026–2083 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Scardicchio, A., Zachary, C.E., Torquato, S.: Statistical properties of determinantal point processes in high-dimensional Euclidean spaces. Phys. Rev. E 79, 041108 (2009). MathSciNetCrossRefGoogle Scholar
  20. 20.
    Soshnikov, A.: Determinantal random point fields. Uspekhi Mat. Nauk 55(5–335), 107–160 (2000)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Matemáticas, Estadística y ComputaciónUniversidad de CantabriaSantanderSpain

Personalised recommendations