Restricted minimum volume confidence region for Pareto distribution

  • Fen Jiang
  • Junmei Zhou
  • Jin ZhangEmail author
Regular Article


Under some restriction, we establish the minimum volume confidence region for parameters of Pareto distribution, which can be applied to complete samples and, as well as left, right or doubly censored samples. It is not only computationally convenient, but also almost as accurate as the best confidence region in the literature, the computation of which is difficult in the double or left censoring case.


Critical value Double censoring Parameter Pivotal quantity Sufficient statistic 

Mathematics Subject Classification




This research is partially supported by the National Natural Science Foundation of China (NSFC, Grant No. 11561073). The author would like to thank Editors and anonymous referees for valuable comments, corrections and suggestions.


  1. Abdel-Ghaly AA, Attia AF, Ali HM (1998) Estimation of the parameters of Pareto distribution and the reliability function using accelerated life testing with censoring. Commun Stat Simul Comput 27:469–484MathSciNetCrossRefzbMATHGoogle Scholar
  2. Arnold BC (1983) Pareto distributions. International Cooperative Publishing House, FairlandzbMATHGoogle Scholar
  3. Beirlant J, Teugels JL, Vynckier P (1996) Practical analysis of extreme values. Leuven University Press, LeuvenzbMATHGoogle Scholar
  4. Bickel PJ, Doksum KA (2001) Mathematical statistics: basic ideas and selected topics, vol I, 2nd edn. Prentice Hall, New JerseyzbMATHGoogle Scholar
  5. Brazauskas V, Serfling R (2005) Favorable estimators for fitting Pareto models. Astin Bull 33:365–381CrossRefzbMATHGoogle Scholar
  6. Chen Z (1996) Joint confidence region for the parameter of Pareto distribution. Metrika 44:191–197MathSciNetCrossRefzbMATHGoogle Scholar
  7. David HA, Nagaraja HN (2003) Order statistics, 3rd edn. Wiley, HobokenCrossRefzbMATHGoogle Scholar
  8. Dyer D (1981) Structural probability bounds for the strong Pareto distribution. Can J Stat 9:71–77CrossRefzbMATHGoogle Scholar
  9. Fahidy TZ (2011) Applying Pareto distribution theory to electrolytic powder production. Electrochem Commun 13:262–264CrossRefGoogle Scholar
  10. Fernández AJ (2008) Highest posterior density estimation from multiply censored Pareto data. Stat Pap 49:333–341MathSciNetCrossRefzbMATHGoogle Scholar
  11. Fernández AJ (2012) Minimizing the area of a Pareto confidence region. Eur J Oper Res 221:205–212MathSciNetCrossRefzbMATHGoogle Scholar
  12. Fernández AJ (2013) Smallest Pareto confidence regions and applications. Comput Stat Data Anal 62:11–25MathSciNetCrossRefzbMATHGoogle Scholar
  13. Fernández AJ (2014) Computing optimal confidence sets for Pareto models under progressive censoring. J Comput Appl Math 259:168–180MathSciNetCrossRefzbMATHGoogle Scholar
  14. Hong CW, Wu JW, Cheng CH (2008) Computational procedure of performance assessment of lifetime index of Pareto lifetime businesses based on confidence interval. Appl Soft Comput 8:698–705CrossRefGoogle Scholar
  15. Howlader HA, Hossain A (2002) Bayesian survival estimation of Pareto distribution of the second kind based on failure-censored data. Comput Stat Data Anal 38:301–314MathSciNetCrossRefzbMATHGoogle Scholar
  16. Ijiri Y, Simon HA (1975) Some distributions associated with Bose-Einstein statistics. Proc Natl Acad Sci 72:1654–1657MathSciNetCrossRefGoogle Scholar
  17. Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1, 2nd edn. Wiley, New YorkzbMATHGoogle Scholar
  18. Kim JHT, Ahn S, Ahn S (2017) Parameter estimation of the Pareto distribution using a pivotal quantity. J Korean Stat Soc 46:438–450MathSciNetCrossRefzbMATHGoogle Scholar
  19. Kuş C, Kaya MF (2007) Estimation for the parameters of the Pareto distribution under progressive censoring. Commun Stat 36:1359–1365MathSciNetCrossRefzbMATHGoogle Scholar
  20. Nigm AM, Al-Hussaini EK, Jaheen ZF (2003) Bayesian one-sample prediction of future observation under pareto distribution. Statistics 37:527–536MathSciNetCrossRefzbMATHGoogle Scholar
  21. Pareto V (1897) Couts d’economie politique. Rouge and cie, Lausanne and ParisGoogle Scholar
  22. Parsi S, Ganjali M, Sanjari Farsipour N (2010) Simultaneous confidence intervals for the parameters of Pareto distribution under progressive censoring. Commun Stat 39:94–106MathSciNetCrossRefzbMATHGoogle Scholar
  23. R Core Team (2014) R: a Language and environment for statistical computing, R foundation for statistical computing, Vienna.
  24. Reed WJ, Jorgensen M (2004) The double Pareto-lognormal distributiona new parametric model for size distributions. Commun Stat 33:1733–1753CrossRefzbMATHGoogle Scholar
  25. Seal HL (1980) Survival probabilities based on Pareto claim distributions. Astin Bull 11:61–72CrossRefGoogle Scholar
  26. Soliman AA (2008) Estimations for Pareto model using general progressive censored data and asymmetric loss. Commun Stat 37:1353–1370MathSciNetCrossRefzbMATHGoogle Scholar
  27. Upadhyay SK, Shastri V (1997) Bayesian results for classical Pareto distribution via Gibbs sampler, with doubly-censored observations. IEEE Trans Reliab 46:56–59CrossRefGoogle Scholar
  28. William J Reed (2003) The Pareto law ofincomesan explanation and an extension. Physica 319:469–486MathSciNetCrossRefzbMATHGoogle Scholar
  29. Wu SF (2008) Interval estimation for a Pareto distribution based on the doubly Type II censored sample. Comput Stat Data Anal 52:3779–3788MathSciNetCrossRefzbMATHGoogle Scholar
  30. Wu SF (2010) Interval estimation for the Pareto distribution based on the progressive type II censored sample. J Stat Comput Simul 80:463–474MathSciNetCrossRefzbMATHGoogle Scholar
  31. Wu JW, Lee WC, Chen SC (2006) Computational comparison for weighted moments estimators and BLUE of the scale parameter of a Pareto distribution with known shape parameter under type II multiply censored sample. Appl Math Comput 181:1462–1470MathSciNetzbMATHGoogle Scholar
  32. Wu JW, Lee WC, Chen SC (2007) Computational comparison of prediction future lifetime of electronic components with Pareto distribution based on multiply type II censored samples. Appl Math Comput 184:374–406MathSciNetzbMATHGoogle Scholar
  33. Zhang J (2013) Simplification of joint confidence regions for the parameters of the Pareto distribution. Comput Stat 28:1453–1462MathSciNetCrossRefzbMATHGoogle Scholar
  34. Zhang J (2017a) Minimum-volume confidence sets for exponential distributions. The American Statistician (in press)Google Scholar
  35. Zhang J (2017b) Minimum-volume confidence sets for parameters of normal distributions. AStA Adv Stat Anal 101:309–320MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsYunnan UniversityKunmingChina
  2. 2.School of Mathematics and StatisticsHainan Normal UniversityHaikouChina

Personalised recommendations