Advertisement

Cardiovascular and ventilatory interactions in the facultative air-breathing teleost Pangasianodon hypophthalmus

  • Vinicius Araújo Armelin
  • Mikkel Thy ThomsenEmail author
  • Mariana Teodoro Teixeira
  • Luiz Henrique Florindo
  • Mark Bayley
  • Tobias Wang
Original Paper

Abstract

All vertebrates possess baroreceptors monitoring arterial blood pressure and eliciting reflexive changes in vascular resistance and heart rate in response to blood pressure perturbations imposed by, e.g., exercise, hypoxia, or hemorrhage. There is considerable variation in the magnitude of the baroreflex amongst vertebrate groups, making phylogenetic trends and association with major evolutionary events such as air-breathing and endothermy, difficult to identify. In the present study, we quantified the baroreflex in the facultative air-breathing catfish Pangasianodon hypophthalmus. Using a pharmacological approach, we quantified the cardiac limb of the baroreflex and by subjecting fish to hypoxia and by stimulation with NaCN with and without pharmacological autonomic blockade; we also examined the cardiovascular regulation associated with air-breathing. As in most other air-breathing fish, air-breathing elicited a substantial tachycardia. This tachycardia was abolished by cholinergic muscarinic pharmacological blockade, which also abolished the cardiac limb of the baroreflex, and consequently such fish failed to maintain their arterial blood pressure when air-breathing. In higher vertebrate classes, baroreceptors elicit ventilatory changes; however, whether this is the case in fish has not previously been investigated. Pangasianodon hypophthalmus demonstrated a prominent increase in ventilation during imposed hypotension. Collectively, these results demonstrate, for the first time, an efficient baroreflex in an air-breathing fish, point towards involvement of baroreceptors in blood pressure regulation during air-breathing, and show a correlation between blood pressure and ventilation, providing additional information on the origin of this link.

Keywords

Blood pressure regulation Baroreceptors Pharmacology Hypoxia 

Abbreviations

AB

Air-breathing

ABO

Air-breathing organ

DA

Dorsal aorta

fG

Gill ventilation frequency

fH

Heart rate

IBP

Intra-buccal pressure

PDA

Dorsal aortic blood pressure

PE

Phenylephrine

PVA

Ventral aorta blood pressure

SNP

Sodium nitroprusside

VAMP

Amplitude of gill ventilation

VG

Total gill ventilation

VA

Ventral aorta

Notes

Funding

This study was supported by the Danish International Development Agency (DANIDA), Danish Ministry of Foreign Affairs, iAQUA project (DFCno. 12-014AU), the Danish Independent Research Council (Natur og Univers, Det Frie Forskningsråd), and by the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES, Proc. Numbers: PDSE 88881.133009/2016-01 and 88881.133760/2016-01).

Compliance with ethical standards

Conflict of interest

No conflict of interests, financial or otherwise, are declared by the authors.

Supplementary material

360_2019_1225_MOESM1_ESM.pdf (156 kb)
Supplementary material 1 (PDF 155 kb)

References

  1. Altimiras J, Aissaoui A, Tort L, Axelsson M (1997) Cholinergic and adrenergic tones in the control of heart rate in teleosts. How should they be calculated? Comp Biochem Physiol 118A:131–139CrossRefGoogle Scholar
  2. Altimiras J, Franklin CE, Axelsson M (1998) Relationships between blood pressure and heart rate in the saltwater crocodile Crocodylus porosus. J Exp Biol 201:2235–2242Google Scholar
  3. Armelin VA, Braga VH, Teixeira MT, Rantin FT, Florindo LH, Kalinin AL (2016) Gill denervation eliminates the barostatic reflex in a neotropical teleost, the Tambaqui (Colossoma macropomum). Fish Physiol Biochem 42:1213–1224CrossRefGoogle Scholar
  4. Axelsson M, Fritsche R (1994) Cannulation techniques. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 3. Elsevier, Amsterdam, pp 17–36Google Scholar
  5. Axelsson M, Abe AS, Bicudo JEPW, Nilsson S (1989) On the cardiac control in the South American lungfish, Lepidosiren paradoxa. Comp Biochem Physiol 93A:561–565CrossRefGoogle Scholar
  6. Bagshaw RJ (1985) Evolution of cardiovascular baroreceptor control. Biol Rev 60:121–162CrossRefGoogle Scholar
  7. Bates JN, Baker MT, Guerra R, Harrison DG (1991) Nitric oxide generation from nitroprusside by vascular tissue—evidence that reduction of the nitroprusside anion and cyanide loss are required. Biochem Pharmacol 42:S157–S165CrossRefGoogle Scholar
  8. Bayley M, Damsgaard C, Thomsen M, Malte H, Wang T (2019) Learning to air-breathe: the first steps. Physiology 34:14–29CrossRefGoogle Scholar
  9. Belão TC, Leite CAC, Florindo LH, Kalinin AL, Rantin FT (2011) Cardiorespiratory responses to hypoxia in the African catfish, Clarias gariepinus (Burchell 1822), an air-breathing fish. J Comp Phyisol B 181:905–916CrossRefGoogle Scholar
  10. Belão TC, Zeraik VM, Florindo LH, Kalinin AL, Leite CAC, Rantin FT (2015) Control of cardiorespiratory function in response to hypoxia in an air-breathing fish, the African sharptooth catfish, Clarias gariepinus. Comp Biochem Physiol Part A Mol Integr Physiol 187:130–140CrossRefGoogle Scholar
  11. Berger PJ, Evans BK, Smith DG (1980) Localization of baroreceptors and gain of the baroreceptor-heart rate reflex in the lizard Trachydosaurus rugosus. J Exp Biol 86:197–209Google Scholar
  12. Bianchi-da-Silva LM, Menescal-de-Oliveira L, Hoffmann A (2000) Baroreceptor control of heart rate in the awake toad: peripheral autonomic effectors and arterial baroreceptor areas. J Auton Nerv Syst 80:31–39CrossRefGoogle Scholar
  13. Booth JH (1978) The distribution of blood flow in the gills of fish: application of a new technique to rainbow trout (Salmo gairdneri). J Exp Biol 73:119–129Google Scholar
  14. Burggren W (1991) Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Annu Rev Physiol 53:107–135CrossRefGoogle Scholar
  15. Burleson ML, Milsom WK (1990) Propranolol inhibits 02-sensitive chemoreceptor activity in trout gills. Am J Physiol 258:1089–1091Google Scholar
  16. Burleson L, Milsom WK (1993) Sensory receptors in the first gill arch of rainbow trout. Respir Physiol 93:97–110CrossRefGoogle Scholar
  17. Burleson ML, Milsom WK (1995a) Cardio-ventilatory control in rainbow trout: i. Pharmacology of branchial, oxygen-sensitive chemoreceptors. Respir Physiol 100:231–238CrossRefGoogle Scholar
  18. Burleson ML, Milsom WK (1995b) Cardio-ventilatory control in rainbow trout: iI. Reflex effects of exogenous neurochemicals. Respir Physiol 101:289–299CrossRefGoogle Scholar
  19. Butler PJ, Jones DR (1982) The comparative physiology of diving in vertebrates. In: Lowenstein OE (ed) Advances in comparative physiology and biochemistry, vol 8. Academic press, New York, pp 179–364Google Scholar
  20. Campbell HA, Taylor EW, Egginton S (2004) The use of power spectral analysis to determine cardiorespiratory control in the short-horned sculpin Myoxocephalus scorpius. J Exp Biol 207:1969–1976CrossRefGoogle Scholar
  21. Cowley AW (1992) Long-term control of arterial blood pressure. Physiol Rev 72:231–300CrossRefGoogle Scholar
  22. Dampney RA (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74:323–364CrossRefGoogle Scholar
  23. Damsgaard C, Gam LTH, Dang DT, Van Thinh P, Huong DTT, Wang T, Bayley M (2015) High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus. J Exp Biol 218:1290–1294CrossRefGoogle Scholar
  24. Davis RW (2014) A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. J Comp Physiol B 184:23–53CrossRefGoogle Scholar
  25. Farrell AP (1978) Cardiovascular events associated with air breathing in two teleosts, Hoplerythrinus unitaeniatus and Arapaima gigas. Can J Fish Aquat Sci 56:953–958Google Scholar
  26. Farrell AP (1986) Cardiovascular responses in the sea raven, Hemitripterus americanus, elicited by vascular compression. J Exp Biol 122:65–80Google Scholar
  27. Farrell AP (2007) Tribute to PL Lutz: a message from the heart—why hypoxic bradycardia in fishes? J Exp Biol 210:1715–1725CrossRefGoogle Scholar
  28. Farrell AP, Sobin SS, Randall DJ, Crosby S (1980) Intralamellar blood flow patterns in fish gills. Am J Physiol Regul Integr Comp Physiol 239:428–436CrossRefGoogle Scholar
  29. Florindo LH, Armelin VA, Mckenzie DJ, Rantin FT (2018) Control of air-breathing in fishes: central and peripheral receptors. Acta Histochem 120:642–653CrossRefGoogle Scholar
  30. Fritsche R, Nilsson S (1990) Autonomic nervous control of blood pressure and heart rate during hypoxia in the cod Gadus morhua. J Comp Phyisol B 160:287–292CrossRefGoogle Scholar
  31. Fritsche R, Axelsson M, Franklin CE, Grigg GG, Holmgren S, Nilssonb S (1993) Respiratory and cardiovascular responses to hypoxia in the Australian lungfish. Respir Physiol 94:173–187CrossRefGoogle Scholar
  32. Graham J, Lai N, Chiller D, Roberts J (1995) The transition to air breathing in fishes. V. Comparative aspects of cardiorespiratory regulation in Synbranchus marmoratus and Monopterus albus (Synbranchidae). J Exp Biol 198:1455–1467Google Scholar
  33. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346CrossRefGoogle Scholar
  34. Hagensen MK, Abe AS, Wang T (2010) Baroreflex control of heart rate in the broad-nosed caiman Caiman latirostris is temperature dependent. Comp. Biochem Physiol A Mol Integr Physiol 156:458–462CrossRefGoogle Scholar
  35. Hedrick MS, Hillman SS, Drewes RC, Withers PC (2013) Lymphatic regulation in nonmammalian vertebrates. J Appl Physiol 115:297–308CrossRefGoogle Scholar
  36. Iversen NK, Mckenzie DJ, Malte H, Wang T (2010) Reflex bradycardia does not influence oxygen consumption during hypoxia in the European eel (Anguilla anguilla). J. Comp. Phyisology B 180:495–502CrossRefGoogle Scholar
  37. Iversen NK, Lauridsen H, Thi D, Huong T, Cong N Van, Gesser H, Buchanan R, Bayley M, Pedersen M, Wang T (2013) Cardiovascular anatomy and cardiac function in the air-breathing swamp eel (Monopterus albus). Comp. Biochem. Physiol. Part A 164:171–180CrossRefGoogle Scholar
  38. Johansen K (1966) Air breathing in the teleost Symbranchus marmoratus. Comp Biochem Physiol 18:383–395CrossRefGoogle Scholar
  39. Johansen K, Lenfant C, Hanson D (1968) Cardivascular dynamics in the lungfishes. Z Vgl Physiol 59:157–186Google Scholar
  40. Jones DR, Milsom WK (1982) Peripheral receptors affecting breathing and cardiovascular function in non-mammalian vertebrates. J Exp Biol 100:59–91Google Scholar
  41. Kent BB, Drane JW, Blumenstein B, Manning JW (1972) A mathematical model to assess changes in the baroreceptor reflex. Cardiology 57:295–310CrossRefGoogle Scholar
  42. Lefevre S, Huong DTT, Wang T, Phuong NT, Bayley M (2011) Hypoxia tolerance and partitioning of bimodal respiration in the striped catfish (Pangasianodon hypophthalmus). Comp Biochem Physiol A: Mol Integr Physiol 158:207–214CrossRefGoogle Scholar
  43. Lefevre S, Wang T, Huong DTT, Phuong NT, Bayley M (2013) Partitioning of oxygen uptake and cost of surfacing during swimming in the air-breathing catfish Pangasianodon hypophthalmus. J. Comp Physiol B Biochem Syst Environ Physiol 183:215–221CrossRefGoogle Scholar
  44. Lopes JM, de Boijink CL, Florindo LH, Leite CAC, Kalinin AL, Milsom WK, Rantin FT (2010) Hypoxic cardiorespiratory reflexes in the facultative air-breathing fish jeju (Hoplerythrinus unitaeniatus): role of branchial O2 chemoreceptors. J. Comp Physiol B Biochem Syst Environ Physiol 180:797–811CrossRefGoogle Scholar
  45. Lutz BR (1930) Reflex cardiac and respiratory inhibition in the elasmobranch, Scyllium canicula. Biol Bull 59:170–178CrossRefGoogle Scholar
  46. Lutz BR, Wyman LC (1932) Reflex cardiac inhibition of branchio-vascular origin in the elasmobranch, Squalus Acanthias. Biol Bull 62:10–16CrossRefGoogle Scholar
  47. McKenzie DJ, Burleson ML, Randall DJ (1991) The effects of branchial denervation and pseudobranch ablation on cardioventilatory control in an air-breathing fish. J Exp Biol 161:347–365Google Scholar
  48. Mckenzie DJ, Taylor EW, Bronzi P, Bolis CL (1995) Aspects of cardioventilatory control in the adriatic sturgeon (Acipenser naccarii). Respir Physiol 100:45–53CrossRefGoogle Scholar
  49. McKenzie DJ, Campbell HA, Taylor EW, Micheli M, Rantin FT, Abe AS (2007) The autonomic control and functional significance of the changes in heart rate associated with air breathing in the jeju, Hoplerythrinus unitaeniatus. J Exp Biol 210:4224–4242CrossRefGoogle Scholar
  50. Mckenzie DJ, Skov PV, Taylor EWT, Wang T, Steffensen JF (2009) Abolition of reflex bradycardia by cardiac vagotomy has no effect on the regulation of oxygen uptake by Atlantic cod in progressive hypoxia. Comp Biochem Physiol Part A 153:332–338CrossRefGoogle Scholar
  51. McMullan S, Pilowsky PM (2010) The effects of baroreceptor stimulation on central respiratory drive: a review. Respir Physiol Neurobiol 174:37–42CrossRefGoogle Scholar
  52. McWilliam JA (1885) On the structure and rhythm of the heart in fishes with especial reference to the heart of the eel. J Physiol 6:232–245CrossRefGoogle Scholar
  53. Milsom WK (2012) New insights into gill chemoreception: receptor distribution and roles in water and air breathing fish. Respir Physiol Neurobiol 184:326–339CrossRefGoogle Scholar
  54. Mott JC (1951) Some factors affecting the blood circulation in the common eel (Anguilla anguilla). J Physiol 114:387–398CrossRefGoogle Scholar
  55. Nilsson S (1994) Evidence for adrenergic nervous control of blood pressure in teleost fish. Physiol. Zool. 67:1347–1359CrossRefGoogle Scholar
  56. Nilsson S, Sundin L (1998) Gill blood flow control. Comp Biochem Physiol A: Mol Integr Physiol 119:137–147CrossRefGoogle Scholar
  57. Olson KR (1994) circulatory anatomy in bimodally breathing fish. Am Zool 34:280–288CrossRefGoogle Scholar
  58. Panneton WM (2013) The mammalian diving response: an enigmatic reflex to preserve life? Physiology 28:284–297CrossRefGoogle Scholar
  59. Perry SF, Desforges PR (2006) Does bradycardia or hypertension enhance gas transfer in rainbow trout (Oncorhynchus mykiss)? Comp Biochem Physiol Part A 144:163–172CrossRefGoogle Scholar
  60. Perry SF, Gilmour KM, Vulesevic B, Chew SF, Ip YK (2005) Circulating catecholamines and cardiorespiratory responses in hypoxic lungfish (Protopterus dolloi): a comparison of aquatic and aerial hypoxia. Physiol Biochem Zool 78:325–334CrossRefGoogle Scholar
  61. Phuong LM, Damsgaard C, Huong DTT, Ishimatsu A, Wang T, Bayley M (2017) Recovery of blood gases and haematological parameters upon anaesthesia with benzocaine, MS-222 or Aqui-S in the air-breathing catfish Pangasianodon hypophthalmus. Ichthyol Res 64:84–92CrossRefGoogle Scholar
  62. Porteus CS, Pollack J, Tzaneva V, Kwong RWM, Kumai Y, Abdallah SJ, Zaccone G, Lauriano ER, Milsom WK, Perry SF (2015) A role for nitric oxide in the control of breathing in zebrafish (Danio rerio). J Exp Biol 218:3746–3753CrossRefGoogle Scholar
  63. Powell FL, Milsom WK, Mitchell GS (1998) Time domains of the hypoxic ventilatory response. Respir Physiol 112:123–134CrossRefGoogle Scholar
  64. Prabhakar NR, Semenza GL (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 967:967–1003CrossRefGoogle Scholar
  65. Prabhakar NR, Peng Y, Jacono FJ, Kumar GK, Dick TE (2005) Neural, hormonal and renal interactions in long-term blood pressure control—cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol 32:447–449CrossRefGoogle Scholar
  66. Reid IA (1996) Angiotensin II and baroreflex of heart rate. News Physiol Sci 11:270–274Google Scholar
  67. Sanchez A, Soncini R, Wang T, Koldkjaer P, Taylor EW, Glass ML (2001) The differential cardio-respiratory responses to ambient hypoxia and systemic hypoxaemia in the South American lungfish Lepidosiren paradoxa. Comp Biochem Physiol Part A 130:677–687CrossRefGoogle Scholar
  68. Sandblom E, Axelsson M (2005) Baroreflex mediated control of heart rate and vascular capacitance in trout. J Exp Biol 208:821–829CrossRefGoogle Scholar
  69. Sandblom E, Axelsson M (2007) The venous circulation: a piscine perspective. Comp Biochem Physiol Part A 148:785–801CrossRefGoogle Scholar
  70. Sandblom E, Axelsson M (2011) Autonomic control of circulation in fish: a comparative view. Auton Neurosci Basic Clin 165:127–139CrossRefGoogle Scholar
  71. Sandblom E, Ekström A, Brijs J, Sundström LF, Jutfelt F, Clark TD, Adill A, Aho T, Gräns A (2016) Cardiac reflexes in a warming world: thermal plasticity of barostatic control and autonomic tones in a temperate fish. J Exp Biol 219:2880–2887CrossRefGoogle Scholar
  72. Short S, Taylor EW, Butler PJ (1979) The effectiveness of oxygen transfer during normoxia and hypoxia in the dogfish (Scyliorhinus canicula L.) before and after cardiac vagotomy. J Comp Phyisol 132:289–295Google Scholar
  73. Singh BN, Hughes GM (1973) Cardiac and respiratory responses in the climbing perch Anabas testudineus. J Comp Phyisol 84:205–226CrossRefGoogle Scholar
  74. Skals M, Skovgaard N, Taylor EW, Leite CAC, Abe AS, Wang T (2006) Cardiovascular changes under normoxic and hypoxic conditions in the air-breathing teleost Synbranchus marmoratus: importance of the venous system. J Exp Biol 209:4167–4173CrossRefGoogle Scholar
  75. Smatresk N, Cameron J (1982) Respiration and acid-base physiology of the spotted gar, a bimodal breather: I. Normal values, and the response to severe hypoxia. J Exp Biol 96:263–280Google Scholar
  76. Smith DG, Gannon BJ (1978) Selective control of branchial arch perfusion in an air-breathing Amazonian fish Hoplerythrinus unitaeniatus. Can J Zool 56:959–964CrossRefGoogle Scholar
  77. So N, Van Houdt JKJ, Volckaert FAM (2006) Genetic diversity and population history of the migratory catfishes Pangasianodon hypophthalmus and Pangasius bocourti in the Cambodian Mekong River. Fish Sci 72:469–476CrossRefGoogle Scholar
  78. Soivio A, Nynolm K, Westman K (1975) A technique for repeated sampling of the blood of individual resting fish. J Exp Biol 63:207–217Google Scholar
  79. Sundin L, Nilsson GE (1997) Neurochemical mechanisms behind gill microcirculatory responses to hypoxia in trout: in vivo microscopy study. Am J Physiol Regul Integr Comp Physiol 272:576–585CrossRefGoogle Scholar
  80. Taylor EW, Barrett DJ (1985) Evidence of a respiratory role for the hypoxic bradycardia in the dogfish Scyliorhinus canicula L. Comp Biochem Physiol 80A:99–102CrossRefGoogle Scholar
  81. Taylor EW, Leite CAC, Sartori MR, Wang T, Abe AS, Crossley DA (2014) The phylogeny and ontogeny of autonomic control of the heart and cardiorespiratory interactions in vertebrates. J Exp Biol 217:690–703CrossRefGoogle Scholar
  82. Teixeira MT, Armelin VA, Abe AS, Rantin FT, Florindo LH (2015) Autonomic control of post-air-breathing tachycardia in Clarias gariepinus (Teleostei: Clariidae). J Comp Physiol B 185:669–676CrossRefGoogle Scholar
  83. Thomsen MT, Wang T, Milsom WK, Bayley M (2017) Lactate provides a strong pH-independent ventilatory signal in the facultative air-breathing teleost Pangasianodon hypophthalmus. Sci. Rep. 7:6378CrossRefGoogle Scholar
  84. Van Vliet BN, West NH (1994) Phylogenetic trends in the baroreceptor control of arterial blood pressure. Physiol Zool 67:1284–1304CrossRefGoogle Scholar
  85. Wood CM, Shelton G (1980) Cardiovascular dynamics and adrenergic responses of the rainbow trout in vivo. J Exp Biol 87:247–270Google Scholar
  86. Zena LA, da Silva GSF, Gargaglioni LH, Bícego KC (2016a) Baroreflex regulation affects ventilation in the cururu toad Rhinella schneideri. J Exp Biol 219:3605–3615CrossRefGoogle Scholar
  87. Zena LA, Dantonio V, Gargaglioni LH, Andrade DV, Abe AS, Kênia CB (2016b) Winter metabolic depression does not change arterial baroreflex control of heart rate in the tegu lizard Salvator merianae. J Exp Biol 219:725–733CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Zoology and BotanySão Paulo State University (UNESP)São José do Rio PretoBrazil
  2. 2.Section for Zoophysiology, Department of BioscienceAarhus UniversityAarhusDenmark
  3. 3.Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark

Personalised recommendations