Journal of Comparative Physiology B

, Volume 188, Issue 6, pp 1015–1027 | Cite as

Short and hyperthermic torpor responses in the Malagasy bat Macronycteris commersoni reveal a broader hypometabolic scope in heterotherms

  • Stephanie ReherEmail author
  • Julian Ehlers
  • Hajatiana Rabarison
  • Kathrin H. Dausmann
Original Paper


The energy budgets of animal species are closely linked to their ecology, and balancing energy expenditure with energy acquisition is key for survival. Changes in animals’ environments can be challenging, particularly for bats, which are small endotherms with large uninsulated flight membranes. Heterothermy is a powerful response used to cope with changing environmental conditions. Recent research has revealed that many tropical and subtropical species are heterothermic and display torpor with patterns unlike those of “classical” heterotherms from temperate and arctic regions. However, only a handful of studies investigating torpor in bats in their natural environment exist. Therefore, we investigated whether the Malagasy bat Macronycteris commersoni enters torpor in the driest and least predictable region in Madagascar. We examined the energy balance and thermal biology of M. commersoni in the field by relating metabolic rate (MR) and skin temperature (Tskin) measurements to local environmental characteristics in the dry and rainy seasons. Macronycteris commersoni entered torpor and showed extreme variability in torpor patterns, including surprisingly short torpor bouts, lasting on average 20 min, interrupted by MR peaks. Torpid MR was remarkably low (0.13 ml O2 h−1 g−1), even when Tskin exceeded that of normothermia (41 °C). Macronycteris commersoni is thus physiologically capable of (1) entering torpor at high ambient temperature and Tskin and (2) rapidly alternating between torpid and normothermic MR resulting in very short bouts. This suggests that the scope of hypometabolism amongst heterothermic animals is broader than previously assumed and underlines the importance of further investigation into the torpor continuum.


Energy budgets Thermoregulation Torpor Seasonality Chiroptera Madagascar 



This study has been conducted under the “Accord de Collaboration” between the Université d’Antananarivo (Département de Biologie Animale), Madagascar National Parks and the University of Hamburg. We thank these authorities and the Ministère de l’Environnement, de l’Ecologie et des Forêts for project authorization and support. We also thank J. Ganzhorn for allowing us to operate and use the facilities from research Camp Andranovao and Marie Schoroth as well as our field assistants for their constant support in the field. In addition, J. Rakotondranary and Y. R. Ratovonamana helped with the organization of logistics, fieldwork and authorizations. The research was approved by the Directeur du Système des Aires Protégées, Ministère de l’Environnement, Antananarivo (Autorisation de recherche no. 90/16/MEEMF/SG/DGF/DAPT/SCBT.Re and 003/17/MEEF/SG/DGF/DSAP/SCB.Re, Direction Générale des Forêts) and all described procedures comply with the current laws of Madagascar.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Aldridge HDJN, Brigham RM (1988) Load carrying and maneuverability in an insectivorous bat: a test of the 5% “rule” of radio-telemetry. J Mammal 69(2):379–382. CrossRefGoogle Scholar
  2. Audet D, Thomas DW (1996) Evaluation of the accuracy of body temperature measurement using external radio transmitters. Can J Zool 74:1778–1781CrossRefGoogle Scholar
  3. Ben-Hamo M, Muñoz-Garcia A, Williams JB, Korine C, Pinshow B (2013) Waking to drink: rates of evaporative water loss determine arousal frequency in hibernating bats. J Exp Biol 216:573–577CrossRefGoogle Scholar
  4. Bondarenco A, Körtner G, Geiser F (2013) Some like it cold: summer torpor by freetail bats in the Australian arid zone. J Comp Physiol B 183(8):1113–1122CrossRefGoogle Scholar
  5. Bondarenco A, Körtner G, Geiser F (2014) Hot bats: extreme thermal tolerance in a desert heat wave. Naturwissenschaften 101(8):679–685CrossRefGoogle Scholar
  6. Bouma HR, Carey HV, Kroese FG (2010) Hibernation: the immune system at rest? J Leukoc Biol 88:619–624CrossRefGoogle Scholar
  7. Boyles JG, Thompson AB, McKechnie AE, Malan E, Humphries MM, Careau V (2013) A global heterothermic continuum in mammals. Glob Ecol Biogeogr 22(9):1029–1039. CrossRefGoogle Scholar
  8. Bronrier GN, Maloney SK, Buffenstein R (1999) Survival tactics within thermally-challenging roosts: heat tolerance and cold sensitivity in the Angolan free-tailed bat, Mops condylurus. S Afr J Zool 34(1):1–10CrossRefGoogle Scholar
  9. Brosset A (1962) La reproduction des Chiroptères de l’ouest et du centre de l’Inde. Mammalia 26(2):176–213CrossRefGoogle Scholar
  10. Canale CI, Levesque DL, Lovegrove BG (2012) Tropical heterothermy: does the exception prove the rule or force a re-definition? In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a seasonal world. Springer, Berlin, pp 29–40CrossRefGoogle Scholar
  11. Carpenter FL, Hixon MA (1988) A new function for torpor: fat conservation in a wild migrant hummingbird. Condor 90:373–378CrossRefGoogle Scholar
  12. Churchill S, Draper R, Marais E (1997) Cave utilisation by Namibian bats: population, microclimate and roost selection. SA J Wildl Res 27(2):44–50Google Scholar
  13. Dausmann KH (2005) Measuring body temperature in the field—evaluation of external vs. implanted transmitters in a small mammal. J Therm Biol 30:195–202. CrossRefGoogle Scholar
  14. Dausmann KH, Warnecke L (2016) Primate torpor expression: ghost of the climatic past. Physiology 31:398–408CrossRefGoogle Scholar
  15. Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2005) Hibernation in the tropics: lessons from a primate. J Comp Physiol B 175(3):147–155. CrossRefPubMedGoogle Scholar
  16. Dausmann KH, Glos J, Heldmaier G (2009) Energetics of tropical hibernation. J Comp Physiol B 179:345–357CrossRefGoogle Scholar
  17. Dewar RE, Richard AF (2007) Evolution in the hypervariable environment of Madagascar. Proc Natl Acad Sci USA 104:13723–13727. CrossRefPubMedGoogle Scholar
  18. Doucette LI, Brigham RM, Pavey CR, Geiser F (2012) Prey availability affects daily torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Oecologia 169:361–372CrossRefGoogle Scholar
  19. Faure PA, Re DE, Clare EL (2009) Wound healing in the flight membranes of big brown bats. J Mammal 90(5):1148–1156. CrossRefGoogle Scholar
  20. Foley NM, Goodman SM, Whelan CV, Puechmaille SJ, Teeling E (2017) Towards navigating the Minotaur’s labyrinth: cryptic diversity and taxonomic revision within the speciose genus Hipposideros (Hipposideridae). Acta Chiropt 19:1–18CrossRefGoogle Scholar
  21. Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274CrossRefGoogle Scholar
  22. Geiser F, Brigham RM (2012) The other functions of torpor. In: Ruf T, Bieber C, Arnold W, Millesi E(eds) Living in a seasonal world. Springer, Berlin, pp 109–122CrossRefGoogle Scholar
  23. Geiser F, Stawski C (2011) Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Integr Comp Biol 51(3):337–348CrossRefGoogle Scholar
  24. Goodman SM (2006) Hunting of Microchiroptera in south-western Madagascar. Oryx 40(02):225. CrossRefGoogle Scholar
  25. Goodman SM (2011) Les chauves-souris de Madagascar. Association Vahatra, AntananarivoGoogle Scholar
  26. Goodman SM, Andriafidison D, Andrianaivoarivelo R et al (2005) The distribution and conservation of bats in the dry regions of Madagascar. Anim Conserv 8(2):153–165. CrossRefGoogle Scholar
  27. Goodman SM, Schoeman MC, Rakotoarivelo A, Willows-Munro S (2016) How many species of Hipposideros have occurred on Madagascar since the Late Pleistocene? Zool J Linn Soc 177:428–449CrossRefGoogle Scholar
  28. Grimpo K, Legler K, Heldmaier G, Exner C (2013) That’s hot: golden spiny mice display torpor even at high ambient temperatures. J Comp Physiol B 183(4):567–581. CrossRefPubMedGoogle Scholar
  29. Grolemund G, Wickham H (2011) Dates and times made easy with lubridate. J Stat Softw 40(3):1–25.
  30. Hattingh J (1972) A comparative study of transepidermal water loss through the skin of various animals. Comp Biochem Physiol Part A 43:715–718CrossRefGoogle Scholar
  31. Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobi 141:317–329CrossRefGoogle Scholar
  32. Heldmaier G, Neuweiler G, Rössler W (2013) Vergleichende Tierphysiologie. Springer, BerlinCrossRefGoogle Scholar
  33. Hill RW, Wyse GA, Anderson M (2016) Animal physiology. Sinauer, SunderlandGoogle Scholar
  34. Hosken DJ, Withers PC (1997) Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera: Verspertilionidae) when euthermic and torpid. J Comp Physiol B 167:71–80. CrossRefPubMedGoogle Scholar
  35. Humphries MM, Thomas DW, Kramer DL (2003) The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiol Biochem Zool 76(2):165–179CrossRefGoogle Scholar
  36. Jonasson KA, Willis CK (2012) Hibernation energetics of free-ranging little brown bats. J Exp Biol 215(12):2141–2149. CrossRefPubMedGoogle Scholar
  37. Kelm DH, von Helversen O (2007) How to budget metabolic energy: torpor in a small Neotropical mammal. J Comp Physiol B 177(6):667–677CrossRefGoogle Scholar
  38. Kobbe S, Ganzhorn JU, Dausmann KH (2011) Extreme individual flexibility of heterothermy in free-ranging Malagasy mouse lemurs (Microcebus griseorufus). J Comp Physiol B 181(1):165–173. CrossRefPubMedGoogle Scholar
  39. Kobbe S, Nowack J, Dausmann KH (2014) Torpor is not the only option: seasonal variations of the thermoneutral zone in a small primate. J Compd Physiol B 184:789–797. CrossRefGoogle Scholar
  40. Kofoky A, Andriafidison D, Ratrimomanarivo F, Razafimanahaka HJ, Rakotondravony D, Racey PA, Jenkins RKB (2007) Habitat use, roost selection and conservation of bats in Tsingy De Bemaraha National Park, Madagascar. Biodivers Conserv 16(4):1039–1053. CrossRefGoogle Scholar
  41. Kronfeld-Schor N, Dayan T (2013) Thermal ecology, environments, communities, and global change: energy intake and expenditure in endotherms. Annu Rev Ecol Evol Syst 44:461–480CrossRefGoogle Scholar
  42. Langer F, Fietz J (2014) Ways to measure body temperature in the fild. J Therm Biol 42:46–51. CrossRefPubMedGoogle Scholar
  43. Lebarbenchon C, Ramasindrazana B, Joffrin L et al (2017) Astroviruses in bats, Madagascar. Emerg Microbes Infect 6:e58. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Levesque DL, Tuen AA, Lovegrove BG (2018) Staying hot to fight the heat-high body temperatures accompany a diurnal endothermic lifestyle in the tropics. J Compd Physiol B 188(4):707–716CrossRefGoogle Scholar
  45. Levin E, Plotnik B, Amichai E, Braulke LJ, Landau S, Yom-Tov Y, Kronfeld-Schor N (2015) Subtropical mouse-tailed bats use geothermally heated caves for winter hibernation. Proc R Soc Lond B Biol Sci 282:20142781. CrossRefGoogle Scholar
  46. Licht P, Leitner P (1967) Physiological responses to high environmental temperatures in three species of microchiropteran bats. Comp Biochem Physiol 22(2):371–387CrossRefGoogle Scholar
  47. Lighton JR (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press, OxfordCrossRefGoogle Scholar
  48. Liu JN, Karasov WH (2011) Hibernation in warm hibernacula by free-ranging Formosan leaf-nosed bats, Hipposideros terasensis, in subtropical Taiwan. J Comp Physiol B 181(1):125–135. CrossRefPubMedGoogle Scholar
  49. Lovegrove BG, Canale C, Levesque D, Fluch G, Rehakova-Petru M, Ruf T (2014) Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change? Physiol Biochem Zool 87(1):30–45. CrossRefPubMedGoogle Scholar
  50. Maloney SK, Bronner GN, Buffenstein R (1999) Thermoregulation in the Angolan free-tailed bat Mops condylurus: a small mammal that uses hot roosts. Physiol Biochem Zool 72(4):385–396CrossRefGoogle Scholar
  51. McWilliam AN (1982) Adaptive responses to seasonality in four species of Microchiroptera in coastal Kenya Dissertation, University of AberdeenGoogle Scholar
  52. Millesi E, Prossinger H, Dittami JP, Fieder M (2001) Hibernation effects on memory in European ground squirrels (Spermophilus citellus). J Biol Rhythms 16(3):264–271CrossRefGoogle Scholar
  53. Nowack J, Rojas AD, Körtner G, Geiser F (2015) Snoozing through the storm: torpor use during a natural disaster. Sci Rep 5:11243CrossRefGoogle Scholar
  54. O’Mara MT, Wikelski M, Voigt CC et al (2017) Cyclic bouts of extreme bradycardia counteract the high metabolism of frugivorous bats. elife. CrossRefPubMedPubMedCentralGoogle Scholar
  55. R Core team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  56. Raharinantenaina IMO, Kofoky AF, Mbohoahy T et al (2008) Hipposideros commersoni (E. Geoffroy, 1831, Hipposideridae) roosting in trees in littoral forest, south-eastern Madagascar. Afr Bat Conserv News 15:2–3Google Scholar
  57. Rakotoarivelo AA, Ranaivoson N, Ramilijaona OR, Kofoky AF, Racey PA, Jenkins RK (2007) Seasonal food habits of five sympatric forest Microchiropterans in western Madagascar. J Mammal 88(4):959–966CrossRefGoogle Scholar
  58. Rakotoarivelo A, Willows-Munro S, Schoeman MC, Lamb JM, Goodman SM (2015) Cryptic diversity in Hipposideros commersoni sensu stricto (Chiroptera: Hipposideridae) in western portion of Madagascar. BMC Evol Biol 15:235. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ramasindrazana B, Rajemison B, Goodman SM (2012) Bio-écologie des chauves-souris du Parc National de Tsimanampetsotsa. 2. Variation interspécifique et saisonnière du régime alimentaire. Malagasy Nat 6:117–124Google Scholar
  60. Rasoloariniaina JR, Ganzhorn JU, Raminosoa N (2015) Physicochemical and bacteriological water quality across different forms of land use on the Mahafaly Plateau, Madagascar. Water Qual Expo Health 7(2):111–124CrossRefGoogle Scholar
  61. Razakarivony V, Rajemison B, Goodman SM (2005) The diet of Malagasy Microchiroptera based on stomach contents. Mamm Biol 70(5):312–316CrossRefGoogle Scholar
  62. Riek A, Brinkmann L, Gauly M, Perica J, Ruf T, Arnold W, Hambly C, Speakman JR, Gerken M (2017) Seasonal changes in energy expenditure, body temperature and activity patterns in llamas (Lama glama). Sci Rep 7(1):7600. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Roverud RC, Chappell MA (1991) Energetic and thermoregulatory aspects of clustering behavior in the neotropical bat Noctilio albiventris. Physiol Zool 64:1527–1541CrossRefGoogle Scholar
  64. RStudio Team (2016) RStudio: Integrated Development for R. RStudio Inc., Boston
  65. Ruf T, Geiser F (2015) Daily torpor and hibernation in birds and mammals. Biol Rev Camb Philos Soc 90(3):891–926CrossRefGoogle Scholar
  66. Schmid J, Speakman JR (2000) Daily energy expenditure of the grey mouse lemur (Microcebus murinus): a small primate that uses torpor. J Comp Physiol B 170:633–641CrossRefGoogle Scholar
  67. Schmidt-Nielsen K, Schmidt-Nielsen B, Jarnum SA, Houpt TR (1956) Body temperature of the camel and its relation to water economy. Am J Physiol 188(1):103–112Google Scholar
  68. Speakman JR, Thomas DW (2003) Physiological ecology and energetics of bats. In: Kunz TH, Fenton MB (eds) Bat ecology. The University of Chicago Press, Chicago, pp 430–490Google Scholar
  69. Stawski C, Körtner G, Nowack J, Geiser F (2015) The importance of mammalian torpor for survival in a post-fire landscape. Biol Lett 11:20150134CrossRefGoogle Scholar
  70. Tieleman BI, Williams JB (1999) The role of hyperthermia in the water economy of desert birds. Physiol Biochem Zool 72:87–100CrossRefGoogle Scholar
  71. Toussaint DC, McKechnie AE (2012) Interspecific variation in thermoregulation among three sympatric bats inhabiting a hot, semi-arid environment. J Comp Physiol B 182(8):1129–1140CrossRefGoogle Scholar
  72. van Breukelen F, Martin SL (2015) The hibernation continuum: physiological and molecular aspects of metabolic plasticity in mammals. Physiology (Bethesda) 30(4):273–281. CrossRefGoogle Scholar
  73. Vaughan TA (1977) Foraging behavior of the giant leaf-nosed bat (Hipposideros commersoni). E Afr Wildl J 15:237–249CrossRefGoogle Scholar
  74. Weaver KN, Alfano SE, Kronquist AR, Reeder DM (2009) Healing rates of wing punch wounds in free-ranging little Brown Myotis (Myotis lucifugus). Acta Chiropt 11(1):220–223. CrossRefGoogle Scholar
  75. Weissenböck NM, Arnold W, Ruf T (2012) Taking the heat: thermoregulation in Asian elephants under different climatic conditions. J Comp Physiol B 182(2):311–319CrossRefGoogle Scholar
  76. Wickham H (2011) plyr: The split-apply-combine strategy for data analysis.
  77. Wickham H, Bryan J (2017) readxl: Read Excel Files.
  78. Williams CT, Barnes BM, Buck CL (2012) Daily body temperature rhythms persist under the midnight sun but are absent during hibernation in free-living arctic ground squirrels. Biol Lett 8(1):31–34. CrossRefPubMedGoogle Scholar
  79. Willis CKR, Brigham RM (2003) Defining torpor in free-ranging bats: experimental evaluation of external temperature-sensitive radiotransmitters and the concept of active temperature. J Comp Physiol B 173:379–389CrossRefGoogle Scholar
  80. Zeileis A, Grothendieck G (2005) zoo: S3 infrastructure for regular and irregular time series. J Stat Softw 14(6):1–27. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Functional Ecology, Institute for ZoologyUniversity HamburgHamburgGermany
  2. 2.Animal Ecology and Conservation, Institute for ZoologyUniversity HamburgHamburgGermany
  3. 3.Mention Zoologie et Biodiversité Animale, Faculté des SciencesUniversité d’AntananarivoAntananarivo 101Madagascar

Personalised recommendations