Skip to main content
Log in

Absorption of short-chain fatty acids, sodium and water from the forestomach of camels

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In camelids the ventral parts of compartments 1 and 2 (C1/C2) and the total surface of compartment 3 of the forestomach are lined with tubular glands, whereas in ruminants the surface of the forestomach is composed entirely of stratified, squamous epithelium. Thus, differences in absorption rates between these foregut fermenters can be expected. In five camels C1/C2 was temporarily isolated, washed and filled with buffer solutions. Absorption of short-chain fatty acids (SCFA) and net absorption of sodium and water were estimated relative to Cr-ethylenediaminetetraacetic acid as a fluid marker. SCFA were extensively absorbed in the forestomach; clearance rates of SCFA with different chain lengths were equal. After lowering the pH of solutions SCFA absorption rates increased, but much less than the increase of the non-ionized fraction. Absorption of propionate was lower when acetate had been added. Findings suggest that most of the SCFA in camels are transported in the ionized form, most likely via an anion exchange mechanism. Net water absorption is closely related to net sodium absorption. Apparently water absorption results from an iso-osmotic process. Differences between absorption mechanisms of SCFA from the forestomach of camelids and ruminants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Ac/Hac:

Acetate/acetic acid

Bu/Hbu:

Butyrate/butyric acid

C1/C2:

Compartments 1 and 2

CrEDTA:

Cr-ethylenediaminetetraacetic acid

Pr/HPr:

Propionate/propionic acid

SCFA:

Short-chain fatty acids

References

  • Abdoun K, Stumpff F, Wolf K, Martens H (2005) Modulation of electroneutral Na transport in sheep rumen epithelium by luminal ammonia. Am J Physiol 289:G508–G520

    CAS  Google Scholar 

  • Ali O, Shen Z, Tietjen U, Martens H (2006) Transport of acetate and sodium in sheep omasum: mutual, but asymmetric interactions. J Comp Physiol B 176:477–487

    Article  PubMed  CAS  Google Scholar 

  • Binnert WTA, van´t Kloster Th, Frens AM (1968) Soluble chromium indicator measured by atomic absorption in digestion experiments. Vet Rec 82:470

    Google Scholar 

  • Chu S, Montrose MH (1996) Non-ionic diffusion and carrier-mediated transport drive extracellular pH regulation of mouse colonic crypts. J Physiol 494:783–793

    PubMed  CAS  Google Scholar 

  • Chu S, Tanaka S, Kaunitz JD, Montrose MH (1999) Dynamic regulation of gastric surface pH by luminal pH. J Clin Invest 103:605–612

    Article  PubMed  CAS  Google Scholar 

  • Cummings JF, Munnell JL, Vallenas A (1972) The mucigenous glandular mucosa in the complex stomach of two new-world camelids, the llama and guanaco. J Morphol 137:71–110

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra J, Boer H, van Bruchem J, Bruining M, Taminga S (1993) Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH, and rumen liquid volume. Br J Nutr 69:385–396

    Article  PubMed  CAS  Google Scholar 

  • Dycker Ch (2001) Resorption und Sekretion von kurzkettigen Fettsäuren und Elektrolyten im Vormagen des Kameles. Vet Med Thesis, Hannover

    Google Scholar 

  • Eckerlein RH, Stevens CE (1973) Bicarbonate secretion by the glandular saccules of the llama stomach. Cornell Vet 63:436–445

    Google Scholar 

  • Gäbel G (1988) Natrium- und Chloridtransport im Pansen von Schafen: Mechanismen und ihre Beeinflussung durch intraruminale Fermentationsprodukte. Habilitationsschrift, School of Vetenary Medicine, Hannover

  • Gäbel G (1995) Transport of short-chain fatty acids in the ruminant forestomach. In: Cummings JH, Rombeau JL, Sakata T (eds) Physiological and clinical aspects of short-chain fatty acids. Cambridge University Press, Cambridge, pp 133–148

    Google Scholar 

  • Gäbel G, Aschenbach JR (2006) Ruminal SCFA absorption: channelling acids without harm. In: Sejrsen K, Hevelplund T, Nielsen MO (eds) Ruminant physiology—digestion, metabolism and impact of nutrition on gene expression, immunology and stress. Academic Publications, Wageningen, The Netherlands, pp 173–195

    Google Scholar 

  • Gäbel G, Sehested J (1997) SCFA transport in the forestomach of ruminants. Comp Biochem Physiol A 118:367–374

    Article  Google Scholar 

  • Gäbel G, Bestmann M, Martens H (1991) Influence of diet, short-chain fatty acids, lactate and chloride on bicarbonate movement across the reticulo-rumen wall of sheep. J Vet Med A 38:523–529

    Article  Google Scholar 

  • Gäbel G, Aschenbach JR, Müller F (2002) Transfer of energy substrates across the ruminal epithelium: implications and limitations. Anim Health Res Rev 31:15–30

    Article  CAS  Google Scholar 

  • Gemmel RT, von Engelhardt W (1977) The structure of the cells lining the stomach of the tammar Wallaby (Macropus eugenii). J Anat 123:723–733

    Google Scholar 

  • Genz AK, von Engelhardt W, Busche R (1999) Maintenance and regulation of the pH microclimate at the luminal surface of the distal colon of guinea-pig. J Physiol 517:507–519

    Article  PubMed  CAS  Google Scholar 

  • Hinderer S (1978) Kinetik des Harnstoffwechsels beim Lama bei proteinarmen Diäten. Thesis, Stuttgart-Hohenheim

  • Höller H (1970) Untersuchungen über Sekret und Sekretion der Cardiadrüsenzone im Magen des Schweines. Zbl Vet Med A 17:685–711; 857–873

    Google Scholar 

  • Kramer T, Michelberger T, Gürtler H, Gäbel G (1996) Absorption of short-chain fatty acids across ruminal epithelium of sheep. J Comp Physiol B 166:262–269

    Article  PubMed  CAS  Google Scholar 

  • Lechner-Doll M, von Engelhardt W, Abbas HM, Mousa L, Luciano L, Reale E (1995) Particularities in forestomach anatomy, physiology and biochemistry of camelids compared to ruminants. In: Tisserand JL (ed) Elevage et alimentation du dromadaire–Camel production and nutrition. Options méditerranéennes, Serie B:Etudes et Recherches Nr 13, CIHEAM, Paris, pp 19–32

  • Leonhard-Marek S (2002) Divalent cations reduce the electrogenic transport of monovalent cations across rumen epithelium. J Comp Physiol B 172:635–641

    Article  PubMed  CAS  Google Scholar 

  • Leonhard-Marek S, Stumpff F, Brinkmann I, Breves G, Martens H (2005) Basolateral Mg2+/Na+ exchange regulates apical nonselective cation channel in sheep rumen epithelium via cytosolic Mg2+. Am J Physiol 288:G630–G645

    CAS  Google Scholar 

  • Luciano L, Voss-Wermbter G, Behnke M, von Engelhardt W, Reale E (1979) Die Struktur der Vormagenschleimhaut beim Lama (Lama guanacoe und Lama lamae), I. Vormägen. Gegenbauers Morphol Jahr 125:519–549

    CAS  Google Scholar 

  • Luciano L, Reale E, von Engelhardt W (1980) The fine structure of the stomach mucosa of the llama (Llama guanacoe). II. The fundic region of the hind stomach. Cell Tissue Res 208:207–228

    Article  PubMed  CAS  Google Scholar 

  • Marek M (1991) Resorption von kurzkettigen Fettsäuren und Elektrolyten aus dem Retikulorumen von Schafen: Beeinflussung durch Nahrungsentzug und intraruminale Infusion von Natrium-Butyrat. Vet Med Thesis, Berlin

    Google Scholar 

  • Michelberger T (1994) Propionsäure-Transport über das isolierte Pansenepithel des Schafes. Vet Med Thesis, Berlin

    Google Scholar 

  • Oltmer S, von Engelhardt W (1994) Absorption of short-chain fatty acids from the in-situ-perfused caecum and colon of the guinea pig. Scand J Gastroenterol 29:1009–1016

    PubMed  CAS  Google Scholar 

  • Pitt RE, van Kessel JS, Fox DG, Pell AN, Barry MC, van Soest PJ (1996) Prediction of ruminal fatty acids and pH within the net carbohydrate and protein system. J Anim Sci 74:226–244

    PubMed  CAS  Google Scholar 

  • Rübsamen K (1976) Sekretion und Resorption in der Cardiadrüsenzone des Lamas. Thesis, Stuttgart-Hohenheim

  • Rübsamen K, von Engelhardt W (1978) Bicarbonate secretion and solute absorption in the glandular pouch in the forestomach of the llama. Am J Physiol 235:E1–E6

    PubMed  Google Scholar 

  • Sehested J, Diernaes L, Möller PD, Skadhauge E (1999) Ruminal transport and metabolism of short-chain fatty acids (SCFA) in vitro: effect of SCFA chain length and pH. Comp Biochem Physiol A 123:359–368

    Article  CAS  Google Scholar 

  • Shiau YF, Fernandez P, Jackson MH, McMonagle S (1985) Mechanisms maintaining a low pH microclimate in the intestine. Am J Physiol 248:G608–G617

    PubMed  CAS  Google Scholar 

  • Stevens CE, Hume ID (1996) Comparative physiology of the vertebrate digestive system. Cambridge University Press, Cambridge

    Google Scholar 

  • Stevens CE, Stettler BK (1966) Factors affecting the transport of volatile fatty acids across rumen epithelium. Am J Physiol 210:365–372

    PubMed  CAS  Google Scholar 

  • Südermann M (1986) Untersuchungen über den Einfluß energiereicher Fütterung auf Transportvorgänge der Pansenwand. Vet Med Thesis, Hannover

    Google Scholar 

  • Thenius E (1979) Die Evolution der Säugetiere. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Thorlacius SO, Lodge GA (1973) Absorption of steam-volatile fatty acids from the cow as influenced by diet, buffer and pH. Can J Anim Sci 53:279–288

    Article  CAS  Google Scholar 

  • Vidyasagar S, Barmeyer Ch, Geibel J, Binder HJ, Rajendran VM (2005) Role of short-chain fatty acids in colonic HCO3 secretion. Am J Physiol 288:G1217–G1226

    CAS  Google Scholar 

  • von Engelhardt W, Hauffe R (1975) Role of the omasum in absorption and secretion of water and electrolytes in sheep and goats. In: McDonald IW, Warner ACI (eds) Digestion and metabolism in the ruminants. The University of New England publishing Unit, Australia, pp 216–230

    Google Scholar 

  • von Engelhardt W, Sallmann HP (1972) Resorption und Sekretion im Pansen des Guanakos (Lama guanacoe). Zbl Vet Med A 19:117–132

    Google Scholar 

  • von Engelhardt W, Ali KE, Wipper E (1979) Absorption and secretion in the tubiform forestomach (compartment III) of the llama. J Comp Physiol 132:337–341

    Google Scholar 

  • Weigand E, Young JW, McGilliard AD (1975) Volatile fatty acid metabolism by rumen mucosa from cattle fed hay or grain. J Dairy Sci 58:1294–1300

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The skilled technical assistance of G. Becker, M. Burmester and K. Hansen is greatly appreciated. We thank F. Herkenrath and M. Rhode for careful training of the camels and for help throughout the experiments. We are grateful to Frances C. Sherwood-Brock for editing of the English manuscript and Dr Roger Busche for his assistance in preparing illustrations and the electronic version of the manuscript. Ch. Dycker was financially supported by the H. Wilhelm Schaumann Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. von Engelhardt.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Engelhardt, W., Dycker, C. & Lechner-Doll, M. Absorption of short-chain fatty acids, sodium and water from the forestomach of camels. J Comp Physiol B 177, 631–640 (2007). https://doi.org/10.1007/s00360-007-0161-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-007-0161-8

Keywords

Navigation