The Cataglyphis Mahrèsienne: 50 years of Cataglyphis research at Mahrès

  • Rüdiger WehnerEmail author
Review - History


Every year since 1969, research groups from Zürich have spent the summer months in the barren sandy areas around the Tunisian village Mahrès to study the navigational behaviour of Cataglyphis desert ants, its sensory underpinnings, and ecophysiological settings. From the 1990s onwards, researchers from other countries were invited to join the Zürich group, so that Cataglyphis increasingly advanced to become a model organism for the study of animal navigation. Its cockpit became the focus of a dynamic research system, an ‘epistemic thing’, as modern parlance in the philosophy of science has it. Investigations aimed at the ants’ compasses and odometers, at path integration, view-based landmark guidance, and how information from these various navigational routines is combined in computing the courses to steer. In this multifaceted work, the researchers’ familiarity with the site, with Mahrès, and its local geographical and historical conditions, has been essential. The essay briefly retraces the historical development of this research system. After the system had been firmly established at the North African Mahrès site, it was extended to the ecological equivalents of Cataglyphis in other true deserts of the world, to Ocymyrmex in the Namib Desert of southern Africa, and to Melophorus in central Australia.


Cataglyphis Insect navigation Mahrès Melophorus Ocymyrmex 



This paper is dedicated to the citizens of Mahrès. I thank the current Mayor, M. Cheniour Mohamed, for kindly providing me with information about the population of Mahrès. Moreover, this essay is to gratefully acknowledge the excellent work done over five decades by several cohorts of graduate students, who have followed me to our Tunisian study site. There they got fascinated by Cataglyphis and attracted to life in the Mahrès community. It has been an immense pleasure to cooperate with them, and it is a current pleasure to see how many of them originally educated by the Cataglyphis Mahrèsienne now hold professorships in various fields of the life sciences, where they work on insect vision, insect ecology, the physiology of the vertebrate retina, and the neuroscience of the mammalian cortex, or in fields that might be as far apart from each other as evolutionary parasitology, ecotoxicology, biomedical research, and paleoanthropology. I thank Helmut Heise for his perfect mechanical work in constructing the varied sets of technical devices used over the years in the Mahrès field experiments. Moreover, I am very grateful to Stefan Sommer for ongoing discussions during my emeritus times and his comments on the manuscript, to Thomas Heinemann for his high expertise and kind cooperation in preparing the figures, to Patric Scherer for his linguistic knowledge and advice in Arabic, and to Kevan Martin and Bernhard Ronacher for their careful look at the manuscript and their valuable suggestions. My deepest thanks go to my wife Sibylle, also a biologist, who joined me in all journeys to desert ant land, where she became a Cataglyphis (and Ocymyrmex and Melophorus) aficionada and expert, and supported me in every way imaginable. Our research on the Cataglyphis Mahrèsienne was generously supported by the Swiss National Science Foundation, the Hescheler Stiftung, the Georges und Antoine Claraz Schenkung, the Human Frontier Science Program, the German National Science Foundation, the Volkswagenstiftung, and most recently by the Alexander von Humboldt Foundation. I am very appreciative of this financial support received through 50 years.


  1. Abbott A (2018) Bat man. Nature 559:165–168CrossRefPubMedGoogle Scholar
  2. Abun-Nasr JM (1971) A history of the Maghrib. Cambridge University Press, CambridgeGoogle Scholar
  3. Agosti D (1990) Review and reclassification of Cataglyphis (Hymenoptera, Formicidae). J Nat Hist 24:1457–1505CrossRefGoogle Scholar
  4. Antonsen PH, Wehner R (1995) Visual-field topology of the desert ant’s snapshot. Proc Neurobiol Conf Gött 23:42Google Scholar
  5. Ardin P, Peng F, Mangan M, Lagogiannis K, Webb B (2016) Using an insect mushroom body circuit to encode route memory in complex natural environments. PLoS Comput Biol 12:e1004683CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aron S, Wehner R (2019) Cataglyphis. In: Starr CK (ed) Encyclopedia of social insects. Springer, Berlin (in press)Google Scholar
  7. Bachmann F, Pfister W (1973) Tunesien. Olten and Freiburg i.Br, Walter VerlagGoogle Scholar
  8. Baddeley B, Graham P, Philippides A, Husbands P (2011) Holistic visual encoding of ant-like routes: navigation without waypoints. Adapt Behav 19:3–15CrossRefGoogle Scholar
  9. Barth H (1857) Reisen und Entdeckungen in Nord- und Central-Afrika in den Jahren 1849 bis 1855, vol 1. Justus Perthes, GothaGoogle Scholar
  10. Belkohodja K, Mahjoubi A, Slim H (1960) Histoire de la Tunisie. L’Antique. Tunis, Société Tunisienne de DiffusionGoogle Scholar
  11. Bibi H (2002) Maharès. Site stratégique, civilisation et arts. Tunis (published by the author)Google Scholar
  12. Bisch S, Wehner R (1998) Visual navigation in ants: evidence for site-based vectors. Proc Neurobiol Conf Gött 26:417Google Scholar
  13. Blaimer BB, Brady SG, Schultz TR, Lloyd MW, Fisher BL, Ward PS (2015) Phylogenomic methods outperform traditional multi-locus approaches in resolving deep evolutionary history: a case study of formicine ants. BMC Evol Biol 15:271CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bolek S (2013) Zielfindungsstrategien bei Wüstenameisen (Cataglyphis fortis). Ph.D. Thesis, University of UlmGoogle Scholar
  15. Bolton B, Marsh AC (1989) The afrotropical thermophilic ant genus Ocymyrmex (Hymenoptera: Formicidae). J Nat Hist 23:1267–1308CrossRefGoogle Scholar
  16. Borowiec L, Salata S (2012) Ants of Greece—additions and corrections (Hymenoptera: Formicidae). Genus 24:335–401Google Scholar
  17. Boulay R, Aron S, Cerdá X, Doums C, Graham P, Hefetz A, Monnin T (2017) Social life in arid environments: the case study of Cataglyphis ants. Annu Rev Entomol 62:305–321CrossRefPubMedGoogle Scholar
  18. Bregy P, Sommer S, Wehner R (2008) Nest-mark orientation versus vector navigation in desert ants. J Exp Biol 211:1868–1873CrossRefGoogle Scholar
  19. Bühlmann C (2013) Flexible use of multiple cues: multimodal navigation in the desert ant Cataglyphis. Ph.D. Thesis, University of JenaGoogle Scholar
  20. Bühlmann C, Graham P, Hansson BS, Knaden M (2015) Desert ants use olfactory scenes for navigation. Anim Behav 106:99–105CrossRefGoogle Scholar
  21. Cagniant H (1973) Apparition d’ouvrières à partir d’oeufs pondus par les ouvrières chez la fourmi Cataglyphis cursor. C R Acad Sci Paris D 277:2197–2198Google Scholar
  22. Calhoun JB (1963) The ecology and sociobiology of the Norway Rat. Department of Health, Education, and Welfare, BethesdaCrossRefGoogle Scholar
  23. Cartwright BA, Collett TS (1983) Landmark learning in bees: experiments and models. J Comp Physiol A 151:521–543CrossRefGoogle Scholar
  24. Cerdá X (2001) Behavioural and physiological traits to thermal stress tolerance in two Spanish desert ants. Etologia 9:15–27Google Scholar
  25. Cerdá X, Retana J (2000) Alternative strategies by thermophilic ants to cope with extreme heat: individual versus colony level traits. Oikos 89:155–163CrossRefGoogle Scholar
  26. Cheng K, Wehner R (2002) Navigating desert ants (Cataglyphis fortis) learn to alter their search patterns on their homebound journey. Physiol Entomol 27:285–290CrossRefGoogle Scholar
  27. Cheng K, Narendra A, Sommer S, Wehner R (2009) Traveling in clutter: navigation in the central Australian desert ant Melophorus bagoti. Behav Process 80:261–268CrossRefGoogle Scholar
  28. Cheung A, Vickerstaff R (2010) Finding the way with a noisy brain. PLoS Comp Biol 6(11):e1000992CrossRefGoogle Scholar
  29. Coemans MAJM, Vos Hzn JJ, Nuboer JFW (1994) The relation between celestial colour gradients and the position of the sun, with regard to the sun compass. Vis Res 34:1461–1470CrossRefPubMedGoogle Scholar
  30. Collett M, Collett TS (2000) How do insects use path integration for their navigation? Biol Cybern 83:245–259CrossRefPubMedGoogle Scholar
  31. Collett M, Collett TS (2009) The learning and maintenance of local vectors in desert ant navigation. J Exp Biol 212:895–900CrossRefPubMedGoogle Scholar
  32. Collett M, Collett TS, Bisch S, Wehner R (1998) Local and global vectors in desert ant navigation. Nature 394:269–272CrossRefGoogle Scholar
  33. Collett M, Collett TS, Wehner R (1999) Calibration of vector navigation in desert ants. Curr Biol 9:1031–1034CrossRefPubMedGoogle Scholar
  34. Collett M, Collett TS, Chameron S, Wehner R (2003) Do familiar landmarks reset the global path integration system of desert ants? J Exp Biol 206:877–882CrossRefPubMedGoogle Scholar
  35. Collett M, Chittka L, Collett TS (2013) Spatial memory in insect navigation. Curr Biol 23:R789–R800CrossRefPubMedGoogle Scholar
  36. Collett TS, Dillmann E, Giger A, Wehner R (1992) Visual landmarks and route following in desert ants. J Comp Physiol A 170:435–442CrossRefGoogle Scholar
  37. Collett TS, Lent DD, Graham P (2014) Scene perception and the visual control of travel direction in navigating wood ants. Phil Trans R Soc B 369:20130035CrossRefPubMedGoogle Scholar
  38. Coulson KL, Dave JV, Sekera Z (1960) Tables related to radiation emerging from a planetary atmosphere with Rayleigh scattering. University of California Press, BerkeleyGoogle Scholar
  39. Dachraoui F, Djait H, Douib A, M’Rabet MA, Talbi M (1970) Histoire de la Tunisie. Le moyen age. Tunis, Société Tunisienne de DiffusionGoogle Scholar
  40. Dahmen H, Wahl VL, Pfeffer SE, Mallot HA, Wittlinger M (2017) Naturalistic path integration of Cataglyphis desert ants on an air-cushioned lightweight spherical treadmill. J Exp Biol 220:634–644CrossRefPubMedGoogle Scholar
  41. Despois J (1955) La Tunisie orientale. Sahel et basse steppe. Institute Hautes Etudes, ParisGoogle Scholar
  42. Dietrich B (2002) The coexistence of two desert ants in Tunisia and their phylogenetic background (Cataglyphis, Formicidae, Hymenoptera). Ph.D. Thesis, University of ZürichGoogle Scholar
  43. Dillier FX (1998) Räumliche und zeitliche Parameter der Sozialstruktur in Populationen sympatrischer Cataglyphis-Arten. Ph.D. Thesis, University of ZürichGoogle Scholar
  44. Dillier FX, Wehner R (2004) Spatio-temporal patterns of colony distribution in monodomous and polydomous species of North African desert ants, genus Cataglyphis. Ins Soc 51:186–196CrossRefGoogle Scholar
  45. Duelli P (1974) Polarisationsmusterorientierung bei der Wüstenameise Cataglyphis bicolor (Formicidae, Hymenoptera). Ph.D. Thesis, University of ZürichGoogle Scholar
  46. Duelli P, Wehner R (1973) The spectral sensitivity of polarized light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol 86:37–53CrossRefGoogle Scholar
  47. el Hadi Cherif M (1984) Das arabische Tunesien. In: Schliephake K (ed) Tunesien. Thienemanns, Stuttgart, pp 107–124Google Scholar
  48. Emery C (1925) Hymenoptera, Fam. Formicidae, Subfam. Formicinae. In: Wytsman P (ed) Genera Insectorum, vol 183. Louis Desmet-Verteneuil, Bruxelles, pp 1–302Google Scholar
  49. Esch HE, Burns JE (1995) Honeybees use optic flow to measure the distance of a food source. Naturwissenschaften 82:38–40CrossRefGoogle Scholar
  50. Fent K (1985) Himmelsorientierung bei der Wüstenameise Cataglyphis bicolor: Bedeutung von Komplexaugen und Ocellen. Ph.D. Thesis, University of ZürichGoogle Scholar
  51. Fent K, Wehner R (1985) Ocelli: a celestial compass in the desert ant, Cataglyphis. Science 228:192–194CrossRefPubMedGoogle Scholar
  52. Fleischmann PN (2018) Starting foraging life: early calibration and daily use of the navigational system in Cataglyphis ants. Ph.D. Thesis, University of WürzburgGoogle Scholar
  53. Fleischmann PN, Christian M, Müller VL, Rössler W, Wehner R (2016) Ontogeny of learning walks and the acquisition of landmark information in desert ants, Cataglyphis fortis. J Exp Biol 219:3137–3145CrossRefPubMedGoogle Scholar
  54. Fleischmann PN, Grob R, Wehner R, Rössler W (2017) Species-specific learning walk choreographies in Cataglyphis desert ants. J Exp Biol 219:3137–3145CrossRefGoogle Scholar
  55. Fleischmann PN, Grob R, Müller VL, Wehner R, Rössler W (2018) The geomagnetic field as a compass cue in Cataglyphis ant navigation. Curr Biol 28:1440–1444CrossRefPubMedGoogle Scholar
  56. Forel A (1902) Les fourmis du sahara algérien. Récoltées par M. le Professeur A. Lameere et le Dr. A. Diehl. Ann Soc Entomol Belgique 46:147–158Google Scholar
  57. Fraenkel G (1931) Die Mechanik der Orientierung der Tiere im Raum. Biol Rev Camb Philos Soc 6:37–87CrossRefGoogle Scholar
  58. Fraenkel G, Gunn DL (1940) The orientation of animals, kineses, taxes and compass reactions. Clarendon Press, Oxford (2nd edition (1961). New York, Dover)Google Scholar
  59. Freas CA, Cheng K (2018) Landmark learning, cue conflict and outbound view sequence in navigating desert ants. J Exp Psychol Anim Learn Cogn 44:409–421CrossRefPubMedGoogle Scholar
  60. Gehring W, Wehner R (1995) Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proc Natl Acad Sci USA 92:2994–2998CrossRefPubMedGoogle Scholar
  61. Geiser FX (1985) Elektrophysiologische Charakterisierung der Ocellen von Apis mellifera und Cataglyphis bicolor. Ph.D. Thesis, University of ZürichGoogle Scholar
  62. Grah G (2007) Dreidimensionale Orientierung anhand vereinfachter Repräsentationen von Routen und Räumen: Verhaltensversuche an der Wüstenameise Cataglyphis fortis. Ph.D. Thesis, Humboldt University BerlinGoogle Scholar
  63. Graham A, Ashbee HS (1887) Travels in Tunisia. Dulau and Co, LondonGoogle Scholar
  64. Graham P (2010) Insect navigation. In: Breed HD, Moore J (eds) Encyclopedia of animal behavior, vol 2. Academic Press, Oxford, pp 167–175CrossRefGoogle Scholar
  65. Graham P, Philippides A, Baddeley B (2010) Animal cognition: multimodal interactions in ant learning. Curr Biol 20:R639–R640CrossRefPubMedGoogle Scholar
  66. Grob R, Fleischmann PN, Grübel K, Wehner R, Rössler W (2017) The role of celestial compass information in Cataglyphis ants during learning walks and for neuroplasticity in the central complex and mushroom bodies. Front Behav Neurosci 11:226CrossRefPubMedPubMedCentralGoogle Scholar
  67. Haarmann U (ed) (1987) Geschichte der arabischen Welt. C.H. Beck, MünchenGoogle Scholar
  68. Harkness R, Wehner R (1977) Cataglyphis. Endeavour NS 1:115–121CrossRefGoogle Scholar
  69. Hartley T, Lever C, Burgess N, O’Keefe J (eds) (2014) Space in the brain: cells, circuits, codes and cognition. Philos Trans R Soc B 3691635Google Scholar
  70. Hartmann G, Wehner R (1995) The ant’s path integration system: a neural architecture. Biol Cybern 73:483–497Google Scholar
  71. Heinze S, Narendra A, Cheung A (2018) Principles of insect path integration. Curr Biol 28:R1043–R1058CrossRefPubMedPubMedCentralGoogle Scholar
  72. Herrling PL (1975) Topographische Untersuchungen zur funktionellen Anatomie der Retina von Cataglyphis bicolor (Formicidae, Hymenoptera). Ph.D. Thesis, University of ZürichGoogle Scholar
  73. Herrling PL (1976) Regional distribution of three ultrastructural retinula types in the retina of Cataglyphis bicolor (Formicidae, Hymenoptera). Cell Tiss Res 169:247–266CrossRefGoogle Scholar
  74. Hoinville T, Wehner R (2018) Optimal multiguidance integration in insect navigation. Proc Natl Acad Sci USA 115:2824–2829CrossRefPubMedGoogle Scholar
  75. Huber R (2018) Navigational mechanisms of the desert ant Cataglyphis fortis. Ph.D. Thesis, University of JenaGoogle Scholar
  76. Huber R, Knaden M (2018) Desert ants possess distinct memories for food and nest odors. Proc Natl Acad Sci USA 115:10470–10474CrossRefPubMedGoogle Scholar
  77. Jander R (1963) Grundleistungen der Licht- und Schwereorientierung von Insekten. Z Vergl Physiol 47:381–430CrossRefGoogle Scholar
  78. Jander R (1966) Die Phylogenie von Orientierungsmechanismen der Arthropoden. Verh Dtsch Zool Ges Jahrestg 59:266–306Google Scholar
  79. Jander R (1968) Über die Ethometrie von Schlüsselreizen, die Theorie der telotaktischen Wahlhandlung und das Potenzprinzip der terminalen Kumulation bei Arthropoden. Z Vergl Physiol 59:319–356Google Scholar
  80. Jander R (1970) Ein Ansatz zur modernen Elementarbeschreibung der Orientierungshandlung. Z Tierpsychol 27:771–778CrossRefPubMedGoogle Scholar
  81. Jayatilaka P, Narendra A, Reid SF, Cooper P, Zeil J (2011) Different effects of temperature on foraging activity schedules in sympatric Myrmecia ants. J Exp Biol 214:2730–2738CrossRefPubMedGoogle Scholar
  82. Jayatilaka P, Murray T, Narendra A, Zeil J (2018) The choreography of learning walks in the Australian jack jumper ant Myrmecia croslandi. J Exp Biol 221:jeb185306CrossRefPubMedGoogle Scholar
  83. Judd SPD, Collett TS (1998) Multiple stored views and landmark guidance in ants. Nature 392:710–714CrossRefGoogle Scholar
  84. Judson HF (1979) The eighth day of creation. Simon and Schuster, New YorkGoogle Scholar
  85. Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser MB (2008) Finite scale of spatial representation in the hippocampus. Science 321:140–143CrossRefPubMedGoogle Scholar
  86. Knaden M (2002) Die Sympatrie der zwei Wüstenameisen Cataglyphis bicolor und Cataglyphis mauritanica: Eine ökologische und populationsgenetische Studie. Ph.D. Thesis, University of ZürichGoogle Scholar
  87. Knaden M, Wehner R (2005) Nest mark orientation in desert ants Cataglyphis: what does it do to the path integrator? Anim Behav 70:1349–1354CrossRefGoogle Scholar
  88. Knaden M, Wehner R (2006a) Ant navigation: resetting the path integrator. J Exp Biol 209:26–31CrossRefPubMedGoogle Scholar
  89. Knaden M, Wehner R (2006b) Fundamental differences in life history traits of two species of Cataglyphis ants. Front Zool 3:21CrossRefPubMedPubMedCentralGoogle Scholar
  90. Knaden M, Tinaut A, Cerdá X, Wehner S, Wehner R (2005) Phylogeny of three parapatric species of desert ants, Cataglyphis bicolor, C. viatica, and C. savignyi: a comparison of mitochondrial DNA, nuclear DNA, and morphological data. Zoology 108:169–177CrossRefPubMedGoogle Scholar
  91. Kohler M, Wehner R (2005) Idiosyncratic route-based memories in desert ants, Melophorus bagoti: how do they interact with path-integration vectors? Neurobiol Learn Mem 83:1–12CrossRefPubMedGoogle Scholar
  92. Kretz K (1977) Verhaltensphysiologische Analyse des Farbensehens der Ameise Cataglyphis bicolor (Formicidae, Hymenoptera). Ph.D. Thesis, University of ZürichGoogle Scholar
  93. Kühn A (1919) Die Orientierung der Tiere im Raum. G. Fischer, JenaGoogle Scholar
  94. Kühn-Bühlmann S, Wehner R (2006) Age-dependent and task-related volume changes in the mushroom bodies of visually guided desert ants, Cataglyphis bicolor. J Neurobiol 6:511–521CrossRefGoogle Scholar
  95. Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant Cataglyphis bicolor. J Comp Physiol A 158:1–7CrossRefGoogle Scholar
  96. Labhart T (2000) Polarization-sensitive interneurons in the optic lobes of the desert ant, Cataglyphis bicolor. Naturwissenschaften 87:133–136CrossRefPubMedGoogle Scholar
  97. Lambrinos D, Möller R, Labhart T, Pfeifer R, Wehner R (2000) A mobile robot employing insect strategies for navigation. Robot Auton Syst 30:39–64CrossRefGoogle Scholar
  98. Lanfranconi BC (1982) Kompassorientierung nach dem rotierenden Himmelsmuster bei der Wüstenameise Cataglyphis bicolor. Ph.D. Thesis, University of ZürichGoogle Scholar
  99. Laroui A (1977) The history of the Maghrib: an interpretive essay. Princeton University Press, PrincetonGoogle Scholar
  100. Lebhardt F (2015) The desert ant’s celestial compass system—evaluating the role of the polarization compass of Cataglyphis fortis. Ph.D. Thesis, Humboldt University BerlinGoogle Scholar
  101. Lenoir A, Aron S, Cerdá X, Hefetz A (2009) Cataglyphis desert ants: a good model for evolutionary biology in the Darwin’s anniversary year. Isr J Entomol 39:1–32Google Scholar
  102. Mangan M, Webb B (2012) Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav Ecol 23:944–954CrossRefGoogle Scholar
  103. McMeeking RM, Arzt E, Wehner R (2012) Cataglyphis desert ants improve their mobility by raising the gaster. J Theor Biol 297:17–25CrossRefPubMedGoogle Scholar
  104. Mensching H (1979) Tunesien. Eine geographische Landeskunde, 3rd edn. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  105. Menzi U (1987) Visual adaptation in nocturnal and diurnal ants. J Comp Physiol A 160:11–21CrossRefGoogle Scholar
  106. Menzi-Wyler U (1985) Retinomotorik und circadiane Empfindlichkeitsänderungen in den Komplexaugen von Ameisen der Gattungen Camponotus und Cataglyphis (Formicidae, Hymenoptera). Ph.D. Thesis, University of ZürichGoogle Scholar
  107. Merkle TFC (2007) Orientation and search strategies of desert arthropods: path integration models and experiments with desert ants, Cataglyphis fortis (Forel 1902). Ph.D. Thesis, University of BonnGoogle Scholar
  108. Merkle T, Wehner R (2009) How flexible is the systematic search behaviour of desert ants? Anim Behav 77:1051–1056CrossRefGoogle Scholar
  109. Merkle T, Knaden M, Wehner R (2006) Uncertainty about nest position influences systematic search strategies in desert ants. J Exp Biol 209:3545–3549CrossRefPubMedGoogle Scholar
  110. Meyer EP (1976) Strukturanalyse der Neurone I. und II. Ordnung im Sehsystem der Ameise Cataglyphis bicolor (Formicidae, Hymenoptera). Ph.D. Thesis, University of ZürichGoogle Scholar
  111. Meyer EP (1979) Golgi-EM-study of first and second order neurons in the visual system of Cataglyphis bicolor (Hymenoptera, Formicidae). Zoomorphologie 92:115–139CrossRefGoogle Scholar
  112. Meyer EP (1984) Retrograde labelling of photoreceptors in different eye regions of the compound eyes of bees and ants. J Neurocytol 13:825–836CrossRefPubMedGoogle Scholar
  113. Meyer EP, Domanico V (1999) Microvillar orientation in the photoreceptors of the ant Cataglyphis bicolor. Cell Tissue Res 295:355–361CrossRefPubMedGoogle Scholar
  114. Michel B, Wehner R (1995) Phase-specific activation of landmark memories during homeward-bound vector navigation in desert ants, Cataglyphis fortis. Proc Neurobiol Conf Gött 23:41Google Scholar
  115. Möller R, Lambrinos D, Roggendorf T, Pfeifer R, Wehner R (2001) Insect strategies of visual homing in mobile robots. In: Consi TR (ed) Biorobotics. Methods and applications. MIT Press, Menlo Park, pp 37–66Google Scholar
  116. Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101–104CrossRefPubMedGoogle Scholar
  117. Mote MI, Wehner R (1980) Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J Comp Physiol 137:63–71CrossRefGoogle Scholar
  118. Müller M (1989) Mechanismus der Wegintegration bei Cataglyphis fortis (Hymenoptera: Formicidae). Ph.D. Thesis, University of ZürichGoogle Scholar
  119. Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290CrossRefPubMedGoogle Scholar
  120. Müller M, Wehner R (1994) The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis. J Comp Physiol A 175:525–530CrossRefGoogle Scholar
  121. Müller M, Wehner R (2007) Wind and sky as compass cues in desert ant navigation. Naturwissenschaften 94:589–594CrossRefPubMedGoogle Scholar
  122. Müller M, Wehner R (2010) Path integration provides a scaffold for landmark learning in desert ants. Curr Biol 20:1368–1371CrossRefPubMedGoogle Scholar
  123. Murray T, Zeil J (2017) Quantifying navigational information: the catchment volumes of panoramic snapshots in outdoor scenes. PLoS One 12(10):e0187226CrossRefPubMedPubMedCentralGoogle Scholar
  124. Muser B, Sommer S, Wolf H, Wehner R (2005) Foraging ecology of the thermophilic Australian desert ant, Melophorus bagoti. Austral J Zool 53:301–311CrossRefGoogle Scholar
  125. Narendra A (2007) Homing strategies of the Australian desert ant Melophorus bagoti. I. Proportional path-integration takes the ant half-way home. II. Interaction of the path integrator with visual cue information. J Exp Biol 210:1798–1803, 1804–1812CrossRefPubMedGoogle Scholar
  126. Narendra A, Gourmaud S, Zeil J (2013) Mapping the navigational knowledge of individual foraging ants, Myrmecia croslandi. Proc R Soc B 280:20130683CrossRefPubMedGoogle Scholar
  127. Needham J (1973) Explorations of an ancient tradition. MIT Press, CambridgeGoogle Scholar
  128. Neumeyer R (1994) Strategie der Nahrungsbeschaffung syntoper Arten der Ernteameisengattung Messor im mitteltunesischen Steppengebiet. Ph.D. Thesis, University of ZürichGoogle Scholar
  129. Oldham NJ, Morgan ED, Agosti D, Wehner R (1999) Species recognition from postpharyngeal gland contents of ants of the Cataglyphis bicolor group. J Chem Ecol 25:1383–1393CrossRefGoogle Scholar
  130. Perkins KJ (1986) Tunisia. Crossroads of the islamic and european worlds. Westview Press, BoulderGoogle Scholar
  131. Pfeffer SE (2016) Forward and backward walking: locomotion and navigation in Cataglyphis fortis. Ph.D. Thesis, University of UlmGoogle Scholar
  132. Pfeffer SE, Wittlinger M (2016) Optic flow odometry operates independently of stride integration in carried ants. Science 353:1155–1157CrossRefPubMedGoogle Scholar
  133. Räber F (1979) Retinatopographie und Sehfeldtopologie des Komplexauges von Cataglyphis bicolor (Formicidae, Hymenoptera). Ph.D. Thesis, University of ZürichGoogle Scholar
  134. Recht MA (1982) The fine structure of the home range and activity pattern of free-ranging telemetered urban Norway rats, Rattus norvegicus. Bull Soc Vect Ecol 7:29–35Google Scholar
  135. Rheinberger HJ (1992) Experiment, Differenz, Schrift. Marburg (Lahn), Basilisken-PresseGoogle Scholar
  136. Rheinberger HJ (1997) Toward a history of epistemic things. Synthesizing proteins in the test tube. Stanford University Press, StanfordGoogle Scholar
  137. Rheinberger HJ (2010) An epistemology of the concrete. Twentieth-century histories of life. Duke University Press, DurhamCrossRefGoogle Scholar
  138. Ronacher B, Wehner R (1995) Desert ants, Cataglyphis fortis, use self-induced optic flow to measure distance travelled. J Comp Physiol A 177:21–27CrossRefGoogle Scholar
  139. Ronacher B, Manetsch D, Wehner R (1994) Self-induced optic flow cues influence the assessment of travel distance in the ant Cataglyphis fortis. Proc Neurobiol Conf Gött 22:456Google Scholar
  140. Rössler W (2019) Neuroplasticity in desert ants (Hymenoptera: Formicidae): importance for the ontogeny of navigation. Myrm News 29:1–20Google Scholar
  141. Rowland DC, Roudi Y, Moser M-B, Moser EI (2016) Ten years of grid cells. Annu Rev Neurosci 39:19–40CrossRefPubMedGoogle Scholar
  142. Santschi F (1911) Observations et remarques critiques sur le mécanisme de l’orientation chez les fourmis. Rev Suisse Zool 19:305–338Google Scholar
  143. Sarel A, Finkelstein A, Las L, Ulanovsky N (2017) Vectorial representation of spatial goals in the hippocampus of bats. Science 355:176–180CrossRefPubMedGoogle Scholar
  144. Sassi S, Wehner R (1997) Dead reckoning in desert ants, Cataglyphis fortis: can homeward-bound vectors be reactivated by familiar landmark configurations? Proc Neurobiol Conf Gött 25:484Google Scholar
  145. Schmid-Hempel P (1983) Foraging ecology and colony structure of two sympatric species of desert ants, Cataglyphis bicolor and Cataglyphis albicans. Ph.D. Thesis, University of ZürichGoogle Scholar
  146. Schmitt F (2016) Neuronal basis of temporal polyethism and sky-compass based navigation in Cataglyphis desert ants. Ph.D. Thesis, University of WürzburgGoogle Scholar
  147. Schultheiss P, Cheng K (2011) Finding the nest: inbound searching behaviour in the Australian desert ant, Melophorus bagoti. Anim Behav 81:1031–1038CrossRefGoogle Scholar
  148. Schulze R (1994) Geschichte der islamischen Welt im 20. Jahrhundert. C.H. Beck, MünchenGoogle Scholar
  149. Seid MA, Wehner R (2008) Ultrastructure and synaptic differences of the boutons of the projection neurons between the lip and collar regions of the mushroom bodies in the ant Cataglyphis albicans. J Comp Neurol 507:1102–1108CrossRefPubMedGoogle Scholar
  150. Seidl T (2007) Neuromechanic aspects of desert ant navigation. Ph.D. Thesis, University of ZürichGoogle Scholar
  151. Seidl T, Wehner R (2008) Walking on inclines: how do desert ants monitor slope and step length? Front Zool 5:8CrossRefPubMedPubMedCentralGoogle Scholar
  152. Shi NN, Tsai CC, Camino F, Bernard GD, Yu N, Wehner R (2015) Keeping cool: enhanced optical reflection and heat dissipation in silver ants. Science 349:298–301CrossRefPubMedGoogle Scholar
  153. Singer HR (1987) Der Maghreb und die Pyrenäenhalbinsel bis zum Ausgang des Mittelalters. In: Haarmann U (ed) Geschichte der arabischen Welt. C.H. Beck, München, pp 264–322Google Scholar
  154. Sommer S, Wehner R (2004) The ant’s estimation of distance travelled: experiments with desert ants, Cataglyphis fortis. J Comp Physiol A 190:1–6CrossRefGoogle Scholar
  155. Sommer S, von Beeren C, Wehner R (2008) Multiroute memories in desert ants. Proc Natl Acad Sci USA 105:317–322CrossRefPubMedGoogle Scholar
  156. Sommer S, Weibel D, Blaser N, Furrer A, Wenzler NE, Rössler W, Wehner R (2013) Group recruitment in a thermophilic desert ant, Ocymyrmex robustior. J Comp Physiol A 199:711–722CrossRefGoogle Scholar
  157. Soulairac A (1949) Classification des réactions d’orientation des animaux (tropismes). Ann Biol 25:2–13Google Scholar
  158. Srinivasan MV, Zhang SW, Lehrer M, Collett TS (1996) Honeybee navigation en route to the goal: visual flight control and odometry. J Exp Biol 199:237–243PubMedGoogle Scholar
  159. Steck K (2010) Smells like home: olfactory landmarks in desert ant orientation. Ph.D. Thesis, University of JenaGoogle Scholar
  160. Steck K, Hansson BS, Knaden M (2009) Smells like home: desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest. Front Zool 6:5CrossRefPubMedPubMedCentralGoogle Scholar
  161. Stichweh R (1994) Zur Analyse von Experimentalsystemen. In: Hagner M, Rheinberger HJ, Wahrig-Schmidt B (eds) Objekte, Differenzen und Konjekturen. Akademie Verlag, Berlin, pp 291–296Google Scholar
  162. Stieb SM (2011) Synaptic plasticity in visual and olfactory brain centers of the desert ant Cataglyphis. Ph.D. Thesis, University of WürzburgGoogle Scholar
  163. Stieb SM, Münz TS, Wehner R, Rössler W (2010) Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Dev Neurobiol 70:408–423CrossRefPubMedGoogle Scholar
  164. Stone T, Webb B, Aden A, Wedding NB, Honkanen A, Templin R, Wcislo W, Scimeca L, Warant E, Heinze S (2017) An anatomically constrained model for path integration in the bee brain. Curr Biol 27:3069–3085CrossRefPubMedPubMedCentralGoogle Scholar
  165. Stürzl W, Zeil J (2007) Depth, contrast and view-based matching homing in outdoor scenes. Biol Cybern 96:519–531CrossRefPubMedGoogle Scholar
  166. Stürzl W, Grixa I, Mair E, Narendra A, Zeil J (2015) Three-dimensional models of natural environments and the mapping of navigational information. J Comp Physiol A 201:563–584CrossRefGoogle Scholar
  167. Sudd JH (1967) An introduction to the behaviour of ants. E. Arnold, LondonGoogle Scholar
  168. Taylor KD (1978) Range of movement and activity of common rats (Rattus norvegicus) on agricultural land. J Appl Ecol 15:663–677CrossRefGoogle Scholar
  169. Tsoar A, Natham R, Bartan Y, Vyssotski A, Dell’Omo G, Ulansovsky N (2011) Large-scale navigational map in a mammal. Proc Natl Acad Sci USA 108:E718–E724CrossRefPubMedGoogle Scholar
  170. Vickerstaff RJ, Cheung A (2010) Which coordinate system for modelling path integration? J Theor Biol 263:242–261CrossRefPubMedGoogle Scholar
  171. Vickerstaff RJ, Di Paolo EA (2005) Evolving neural models of path integration. J Exp Biol 208:3349–3366CrossRefPubMedGoogle Scholar
  172. von Frisch K (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148CrossRefPubMedGoogle Scholar
  173. Wahl VL (2016) Navigieren und Laufen bei Cataglyphis Wüstenameisen: Virtuelle Wegintegration auf einer Laufkugelapparatur und vergleichende Kinematikanalyse der Lokomotion. Ph.D. Thesis, University of UlmGoogle Scholar
  174. Wahl V, Pfeffer SE, Wittlinger M (2015) Walking and running in the desert ant Cataglyphis fortis. J Comp Physiol A 201:645–656CrossRefGoogle Scholar
  175. Wehner R (1983) Taxonomie, Funktionsmorphologie und Zoogeographie der saharischen Wüstenameise Cataglyphis fortis (Forel 1902) stat. nov. (Insecta: Hymenoptera: Formicidae). Senckenbergiana Biol 64:89–132Google Scholar
  176. Wehner R (1987) Spatial organization of foraging behaviour in individually searching desert ants, Cataglyphis (Sahara Desert) and Ocymyrmex (Namib Desert). Experientia Suppl 54:15–42Google Scholar
  177. Wehner R (1997) The ant’s celestial compass system: spectral and polarization channels. In: Lehrer M (ed) Orientation and communication in insects. Basel, Birkhäuser, pp 145–185Google Scholar
  178. Wehner R (2008) The desert ant’s navigational toolkit: procedural rather than positional knowledge. J Navig 55:101–114CrossRefGoogle Scholar
  179. Wehner R (2013) Life as a cataglyphologist. Annu Rev Entomol 58:1–18CrossRefPubMedGoogle Scholar
  180. Wehner R (2014) Polarization vision—a discovery story. In: Horváth G (ed) Polarized light and polarization vision in animal sciences. Springer, Heidelberg, pp 3–25CrossRefGoogle Scholar
  181. Wehner R (2016) Early ant trajectories: Spatial behaviour before behaviourism. J Comp Physiol A 202:247–266CrossRefGoogle Scholar
  182. Wehner R, Duelli P (1971) The spatial orientation of desert ants, Cataglyphis bicolor, before sunrise and after sunset. Experientia 27:1364–1366CrossRefGoogle Scholar
  183. Wehner R, Lanfranconi B (1981) What do the ants know about the rotation of the sky? Nature 293:731–733CrossRefGoogle Scholar
  184. Wehner R, Müller M (1985) Does interocular transfer occur in visual navigation by ants? Nature 315:228–229CrossRefGoogle Scholar
  185. Wehner R, Müller M (2006) The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc Natl Acad Sci USA 103:12575–12579CrossRefPubMedGoogle Scholar
  186. Wehner R, Räber F (1979) Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Experientia 35:1569–1571CrossRefGoogle Scholar
  187. Wehner R, Rössler W (2013) Bounded plasticity in the ant’s navigational toolkit. In: Menzel R, Benjamin PR (eds) Vertebrate learning and memory. Elsevier, Amsterdam, pp 514–529CrossRefGoogle Scholar
  188. Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol 142:325–338Google Scholar
  189. Wehner R, Wehner S (2011) Parallel evolution of thermophilia: daily and seasonal foraging patterns of heat-adapted desert ants, Cataglyphis and Ocymyrmex species. Physiol Entomol 36:271–281CrossRefGoogle Scholar
  190. Wehner R, Gallizzi K, Frei C, Vesely M (2002) Calibration processes in desert ant navigation: vector courses and systematic search. J Comp Physiol A 188:683–693CrossRefGoogle Scholar
  191. Wehner R, Harkness R, Schmid-Hempel P (1983) Foraging strategies of individually searching ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Mainz, G. FischerGoogle Scholar
  192. Wehner R, Marsh AC, Wehner S (1992) Desert ants on a thermal tightrope. Nature 357:586–587CrossRefGoogle Scholar
  193. Wehner R, Meier C, Zollikofer C (2004) The ontogeny of foraging behaviour in desert ants, Cataglyphis bicolor. Ecol Entomol 29:40–250CrossRefGoogle Scholar
  194. Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140PubMedGoogle Scholar
  195. Wehner R, Wehner S, Agosti D (1994) Patterns of biogeographic distribution within the bicolor species group of the North African desert ant, Cataglyphis Foerster 1859. Senckenbergiana Biol 74:163–191Google Scholar
  196. Willot Q, Simonis P, Vigneron JP, Aron S (2016) Total internal reflection accounts for the bright color of the Saharan silver ant. PLoS One 11(4):e152325CrossRefGoogle Scholar
  197. Willot Q, Mardulyn P, Defrance M, Gueydan C, Aron S (2018) Molecular chaperoning helps safeguarding mitochondrial integrity and motor functions in the Sahara silver ant Cataglyphis bombycina. Sci Rep 8:9220CrossRefPubMedPubMedCentralGoogle Scholar
  198. Wittlinger M (2006) Mechanisms of three-dimensional (3D) path integration in the desert ant Cataglyphis fortis—odometry and slope detection. Ph.D. Thesis, University of UlmGoogle Scholar
  199. Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312:1965–1967CrossRefPubMedGoogle Scholar
  200. Wittlinger M, Wolf H, Wehner R (2007) Hair plate mechanoreceptors associated with body segments are not necessary for three-dimensional path integration in desert ants, Cataglyphis fortis. J Exp Biol 210:375–382CrossRefPubMedGoogle Scholar
  201. Wittmann T, Schwegler H (1995) Path integration—a network model. Biol Cybern 73:569–575CrossRefGoogle Scholar
  202. Wohlgemuth S, Ronacher B, Wehner R (2001) Ant odometry in the third dimension. Nature 411:795–798CrossRefPubMedGoogle Scholar
  203. Wolf H, Wehner R (2000) Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. J Exp Biol 203:857–868PubMedGoogle Scholar
  204. Wolf H, Wittlinger M, Pfeffer S (2018) Two distance memories in desert ants—modes of interaction. PLoS One 13(10):e0204664CrossRefPubMedPubMedCentralGoogle Scholar
  205. Wystrach A, Beugnon G, Cheng K (2011) Landmarks or panoramas: what do navigating ants attend to for guidance? Front Zool 8:21CrossRefPubMedPubMedCentralGoogle Scholar
  206. Wystrach A, Mangan M, Webb B (2015) Optimal cue integration in ants. Proc R Soc B 282:20151484CrossRefPubMedGoogle Scholar
  207. Zeil J, Hofmann MI, Chahl JS (2003) The catchment areas of panoramic snapshots in outdoor scenes. J Opt Soc Am A 20:450–469CrossRefGoogle Scholar
  208. Zeil J, Narendra A, Stürzl W (2014) Looking and homing: how displaced ants decide where to go. Phil Trans R Soc B 369:20130034CrossRefPubMedGoogle Scholar
  209. Zollikofer CPE (1988) Vergleichende Untersuchungen zum Laufverhalten von Ameisen (Hymenoptera: Formicidae). Ph.D. Thesis, University of ZürichGoogle Scholar
  210. Zollikofer CPE (1994) Stepping patterns in ants I Influence of speed and curvature II Influence of body morphology III Influence of load. J Exp Biol 192:95–106, 107–118, 119–127PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Brain ResearchUniversity of ZurichZurichSwitzerland

Personalised recommendations