Advertisement

Stored perfume dynamics and consequences for signal development in male orchid bees

  • T. EltzEmail author
  • S. Josten
  • T. Mende
Original paper
  • 19 Downloads

Abstract

Male orchid bees (Euglossini) collect volatiles from their environment to concoct species-specific “perfumes”, which are later emitted at mating sites. Intensity, complexity or composition of perfumes may encode age (survival) of a male, but how the individual perfume develops over time needs to be clarified. We investigated chemical changes during storage in leg pockets. We injected a mixture of eight perfume compounds into pockets of Euglossa imperialis and only the two most volatile compounds decreased over 12 days. Using a different approach we found significant shifts in quantities of naturally occurring perfume compounds of Euglossa championi over 10 days, with the strongest decreases (up to 70% peak area) in highly volatile minor compounds, e.g. monoterpenes, and noteworthy increases (up to 40%) in some sesquiterpenoids. Corresponding shifts were observed in legs of dried bees, suggesting that no metabolic activity is required for the observed changes to occur. Our results confirm that male orchid bees are generally good at preserving collected perfumes. However, subtle shifts towards heavier compounds in blends may occur over the lifetime of individual bees, e.g. due to evaporation or in-pocket chemical reaction, with old males acquiring a more pronounced base note in their seasoned perfumes.

Keywords

Euglossini Fragrance Chemical communication Pheromone analogue Scent 

Notes

Acknowledgements

We wish to thank Werner Huber and the entire staff of the La Gamba Tropical Station for continued support. Wittko Francke provided helpful comments on an earlier draft of the manuscript. Supported by the German Science Foundation (El 249/11), the German Academic Exchange Service (DAAD) and the Ruhr-University Bochum. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Research and export permits were granted by MINAE and SINAC, Costa Rica.

Supplementary material

359_2019_1319_MOESM1_ESM.docx (4.5 mb)
Supplementary material 1 (DOCX 4657 KB)

References

  1. Ackerman JD (1989) Geographic and seasonal variation in fragrance choice and preferences of male euglossine bees. Biotropica 21(4):340–347CrossRefGoogle Scholar
  2. Ackerman JD, Montalvo AM (1985) Longevity of euglossine bees. Biotropica 17(1):79–81CrossRefGoogle Scholar
  3. Brooks R, Kemp DJ (2001) Can older males deliver the good genes? Trends Ecol Evol 16(6):308–313CrossRefGoogle Scholar
  4. Cruz-Landim CD, Stort AC, Cruz MADC, Kitajima EW (1965) Orgao tibial dos machos de Euglossini. Estudo ao microscopio optico e electronico. Rev Brasil Biol 25:323–342Google Scholar
  5. dos Santos AB, do Nascimento FS (2015) Cuticular hydrocarbons of orchid bees males: interspecific and chemotaxonomy variation. PLoS One 10(12):11.  https://doi.org/10.1371/journal.pone.0145070 Google Scholar
  6. Dressler RL (1968) Pollination by euglossine bees. Evolution 22:202–210CrossRefGoogle Scholar
  7. Dressler RL (1982) Biology of the orchid bees (Euglossini). Ann Rev Ecol Syst 13:373–394CrossRefGoogle Scholar
  8. Eltz T (1997) Zur Duftstoffbiologie neotropischer Prachtbienen (Apidae: Euglossini). Diplomarbeit, Universität Würzburg, p 104Google Scholar
  9. Eltz T, Whitten WM, Roubik DW, Linsenmair KE (1999) Fragrance collection, storage, and accumulation by individual male orchid bees. J Chem Ecol 25(1):157–176CrossRefGoogle Scholar
  10. Eltz T, Roubik DW, Whitten WM (2003) Fragrances, male display and mating behaviour of Euglossa hemichlora—a flight cage experiment. Physiol Entomol 28:251–260CrossRefGoogle Scholar
  11. Eltz T, Roubik DW, Lunau K (2005a) Experience-dependent choices ensure species-specific fragrance accumulation in male orchid bees. Behav Ecol Sociobiol 59:149–156CrossRefGoogle Scholar
  12. Eltz T, Sager A, Lunau K (2005b) Juggling with volatiles: exposure of perfumes by displaying male orchid bees. J Comp Physiol A 191:575–581CrossRefGoogle Scholar
  13. Eltz T, Zimmermann Y, Haftmann J, Twele R, Francke W, Quezada-Euan JJG, Lunau K (2007) Enfleurage, lipid recycling and the origin of perfume collection in orchid bees. Proc R Soc B 274(1627):2843–2848.  https://doi.org/10.1098/rspb.2007.0727 CrossRefGoogle Scholar
  14. Eltz T, Hedenstrom E, Bang J, Wallin EA, Andersson J (2010) (6R, 10R)-6,10,14-Trimethylpentadecan-2-one, a dominant and behaviorally active component in male orchid bee fragrances. J Chem Ecol 36(12):1322–1326.  https://doi.org/10.1007/s10886-010-9873-4 CrossRefGoogle Scholar
  15. Eltz T, Bause C, Hund K, Quezada-Euan JJG, Pokorny T (2015) Correlates of perfume load in male orchid bees. Chemoecology 25:193–199.  https://doi.org/10.1007/s00049-015-0190-9 CrossRefGoogle Scholar
  16. Gefen E, Talal S, Brenzel O, Dror A, Fishman A (2015) Variation in quantity and composition of cuticular hydrocarbons in the scorpion Buthus occitanus (Buthidae) in response to acute exposure to desiccation stress. Comp Biochem Physiol A Mol Integr Physiol 182:58–63CrossRefGoogle Scholar
  17. Johnson RA, Gibbs AG (2004) Effect of mating stage on water balance, cuticular hydrocarbons and metabolism in the desert harvester ant, Pogonomyrmex barbatus. J Insect Physiol 50:943–953CrossRefGoogle Scholar
  18. Kimsey LS (1980) The behaviour of male orchid bees (Apidae, Hymenoptera, Insecta) and the question of leks. Anim Behav 28:996–1004CrossRefGoogle Scholar
  19. Kimsey LS (1984) The behavioural and structural aspects of grooming and related activities in euglossine bees (Hymenoptera: Apidae). J Zool 204:541–550CrossRefGoogle Scholar
  20. Lancaster J, Khrimian A, Young S, Lehner B, Luck K, Wallingford A, Ghosh SKB, Zerbe P, Muchlinski A, Marek PE, Sparks ME, Tokuhisa JG, Tittiger C, Kollner TG, Weber DC, Gundersen-Rindal DE, Kuhar TP, Tholl D (2018) De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug. Proc Natl Acad Sci USA 115(37):E8634–E8641.  https://doi.org/10.1073/pnas.1800008115 CrossRefGoogle Scholar
  21. Manning JT (1985) Choosy females and correlates of male age. J Theor Biol 116:349–354CrossRefGoogle Scholar
  22. Pokorny T, Hannibal M, Quezada-Euan JJG, Hedenström E, Sjöberg J, Bång J, Eltz T (2013) Acquisition of species-specific perfume blends: influence of habitat-dependent compound availability on odour choices of male orchid bees (Euglossa spp.). Oecologia 172:417–425CrossRefGoogle Scholar
  23. Pokorny T, Ramírez SR, Weber MG, Eltz T (2015) Cuticular hydrocarbons as potential close range recognition cues in orchid bees. J Chem Ecol 41:1080–1094.  https://doi.org/10.1007/s10886-015-0647-x CrossRefGoogle Scholar
  24. Pokorny P, Vogler I, Losch R, Schlütting P, Juarez P, Bissantz N, Ramirez SR, Eltz T (2017) Blown by the wind: the ecology of male courtship display behavior in orchid bees. Ecology 98:1140–1152.  https://doi.org/10.1002/ecy.1755 CrossRefGoogle Scholar
  25. Ramirez SR (2009) Orchid bees. Curr Biol 19(23):R1061–R1063CrossRefGoogle Scholar
  26. Ramírez SR, Eltz T, Fritzsch F, Pemberton RW, Pringle EG, Tsutsui ND (2010) Intraspecific geographic variation of fragrances acquired by orchid bees in native and introduced populations. J Chem Ecol 36:873–884CrossRefGoogle Scholar
  27. Ramírez SR, Eltz T, Fujiwara MK, Gerlach G, Goldman-Huertas B, Tsutsui ND, Pierce NE (2011) Asynchronous diversification in a specialized plant-pollinator mutualism. Science 333:1742–1746CrossRefGoogle Scholar
  28. Vogel S (1966) Parfümsammelnde Bienen als Bestäuber von Orchidaceen und Gloxinia. Österr Botan Zeit 113:302–361CrossRefGoogle Scholar
  29. Weber MG, Mitko L, Eltz T, Ramírez SR (2016) Macroevolution of perfume signalling in orchid bees. Ecol Lett 19(11):1314–1323CrossRefGoogle Scholar
  30. Whitten WM, Young AM, Williams NH (1989) Function of glandular secretions in fragrance collection by male euglossine bees. J Chem Ecol 15:1285–1295CrossRefGoogle Scholar
  31. Williams NH, Dressler RL (1976) Euglossine pollination of Spathiphyllum (Araceae). Selbeyana 1:349–356Google Scholar
  32. Williams NH, Whitten WM (1983) Orchid floral fragrances and male euglossine bees—methods and advances in the last sesquidecade. Biol Bull 164(3):355–395CrossRefGoogle Scholar
  33. Zimmermann Y, Ramírez SR, Eltz T (2009) Chemical niche differentiation among sympatric species of orchid bees. Ecology 90(11):2994–3008CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Animal Ecology, Evolution and BiodiversityRuhr University BochumBochumGermany

Personalised recommendations