Advertisement

Journal of Comparative Physiology A

, Volume 204, Issue 9–10, pp 835–847 | Cite as

Vestibular-related eye movements in the rat following selective electrical stimulation of the vestibular sensors

  • Martin Hitier
  • Go Sato
  • Yan-Feng Zhang
  • Yiwen Zheng
  • Stephane Besnard
  • Paul F. Smith
Original Paper
  • 65 Downloads

Abstract

Rats are the most commonly used species in the neurosciences; however, little is known about the effects of selective electrical stimulation of individual vestibular sensors, on their eye movements. This limits their use to study the effects of vestibular stimulation on the brain, and their use in further exploring novel technologies such as artificial vestibular implants. We describe the effects of electrical stimulation of each vestibular sensor on vestibular-related eye movement in rats and compared the results to other species. We demonstrated that each sensor is responsible for specific bilateral eye movements. We found that the eye movements in rats differed from other species. Although the results were similar when stimulating the horizontal canal ampulla, differences appeared when stimulating the vertical canal sensors. During utricular stimulation, the ipsilateral eye moved dorsally in most cases, while the contralateral eye usually moved either caudally, or in extorsion. Saccular stimulation usually moved the ipsilateral eye dorsally or ventrally, while the contralateral eye usually moved ventrally or caudally. This study provides the first data on the application of selective electrical vestibular stimulation in the rat to the study of vestibular-related eye movements.

Keywords

Vestibular system Selective vestibular stimulation Eye movements Rat Vestibulo-ocular reflexes 

Abbreviations

AA

Anterior canal ampulla

eVOR

Electrically evoked vestibulo-ocular reflex

HA

Horizontal canal ampulla

PA

Posterior canal ampulla

SCCs

Semi-circular canals

SO

Superior oblique

VOR

Vestibulo-ocular reflex

Notes

Acknowledgements

This research was funded from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA Grant agreement no. 318980, a grant from Region Basse Normandie, CNES, and the Royal Society of New Zealand Marsden Fund (to PFS and YZ).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

All of the research reported in this paper was conducted in accordance with the Regulations of the University of Otago Committee on Ethics in the Care and Use of Laboratory Animals and the procedures were approved by that Committee (55/12).

References

  1. Brandt T, Schautzer F, Hamilton DA, Brüning R, Markowitsch HJ, Kalla R, Darlington C, Smith PF, Strupp M (2005) Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128(Pt 11):2732–2741CrossRefPubMedGoogle Scholar
  2. Cartmill M (1974) Rethinking primate origins. Science 184(4135):436–443CrossRefPubMedGoogle Scholar
  3. Cohen BJ, Suzuki JI (1963) Eye movements induced by ampullary nerve stimulation. Am J Physiol 204(2):347–351PubMedGoogle Scholar
  4. Cohen BJ, Suzuki JI, Bender MB (1964) Eye movements from semi-circular canal nerve stimulation in the cat. Ann Otol Rhinol Laryngol 73:153–169CrossRefPubMedGoogle Scholar
  5. Cox PG, Jeffery N (2008) Geometry of the semicircular canals and extraocular muscles in rodents, lagomorphs, felids and modern humans. J Anat 213(5):583–596PubMedPubMedCentralGoogle Scholar
  6. Curthoys IS (1987) Eye movements produced by utricular and saccular stimulation. Aviat Space Environ Med 58(9 Pt 2):A192–A197PubMedGoogle Scholar
  7. Cuthbert PC, Gilchrist DP, Hicks SL, MacDougall HG, Curthoys IS (2000) Electrophysiological evidence for vestibular activation of the guinea pig hippocampus. Neuroreport 11(7):1443–1447CrossRefPubMedGoogle Scholar
  8. Dai C, Fridman GY, Chiang B (2011) Cross-axis adaptation improves 3D vestibulo-ocular reflex alignment during chronic stimulation via a head-mounted multichannel vestibular prosthesis. Exp Brain Res 210(3–4):595–606CrossRefPubMedPubMedCentralGoogle Scholar
  9. Desai SS, Zeh C, Lysakowski A (2005) Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. J Neurophysiol 93(1):251–266CrossRefPubMedGoogle Scholar
  10. Fluur E (1959) Influences of semicircular ducts on extraocular muscles. Acta Oto-Laryngol Suppl 149:1Google Scholar
  11. Fluur E, Mellström A (1970a) Saccular stimulation and oculomotor reactions. Laryngoscope 80(11):1713–1721CrossRefPubMedGoogle Scholar
  12. Fluur E, Mellström A (1970b) Utricular stimulation and oculomotor reactions. Laryngoscope 80(11):1701–1712CrossRefPubMedGoogle Scholar
  13. Fuller PM, Fuller CA (2006) Genetic evidence for a neurovestibular influence on the mammalian circadian pacemaker. J Biol Rhythm 21(3):177–184CrossRefGoogle Scholar
  14. Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130(3):277–297CrossRefPubMedPubMedCentralGoogle Scholar
  15. Goto F, Meng H, Bai R, Sato H, Imagawa M, Sasaki M, Uchino Y (2003) Eye movements evoked by the selective stimulation of the utricular nerve in cats. Auris Nasus Larynx 30(4):341–348CrossRefPubMedGoogle Scholar
  16. Goto F, Meng H, Bai R, Sato H, Imagawa M, Sasaki M, Uchino Y (2004) Eye movements evoked by selective saccular nerve stimulation in cats. Auris Nasus Larynx 31(3):220–225CrossRefPubMedGoogle Scholar
  17. Graf W, McCrea RA, Baker R (1983) Morphology of posterior canal related secondary vestibular neurons in rabbit and cat. Exp Brain Res 52(1):125–138CrossRefPubMedGoogle Scholar
  18. Guyot J-P, Sigrist A, Pelizzone M, Feigl GC, Kos MI (2011) Eye movements in response to electrical stimulation of the lateral and superior ampullary nerves. Ann Otol Rhinol Laryngol 120(2):81–87CrossRefPubMedGoogle Scholar
  19. Haslwanter T (2002) Mechanics of eye movements: Implications of the ‘orbital revolution’. Ann NY Acad Sci 956(1):33–41CrossRefPubMedGoogle Scholar
  20. Heesy CP (2004) On the relationship between orbit orientation and binocular visual field overlap in mammals. Anat Rec 281(1):1104–1110CrossRefGoogle Scholar
  21. Heesy CP (2008) Ecomorphology of orbit orientation and the adaptive significance of binocular vision in primates and other mammals. Brain Behav Evol 71(1):54–67CrossRefPubMedGoogle Scholar
  22. Hess BJM, Dieringer N (1990) Spatial organization of the maculo–ocular reflex of the rat: responses during off-vertical axis rotation. Eur J Neurosci 2(11):909–919CrossRefPubMedGoogle Scholar
  23. Hicks SL (2005) Vestibular and optokinetic input to the hippocampus. Ph-D Thesis University of SydneyGoogle Scholar
  24. Hitier M, Besnard S, Vignaux G, Denise P, Moreau S (2010) The ventrolateral surgical approach to labyrinthectomy in rats: anatomical description and clinical consequences. Surg Radiol Anat 32(9):835–842CrossRefPubMedGoogle Scholar
  25. Hitier M, Besnard S, Smith PF (2014) Vestibular pathways involved in cognition. Front Integr Neurosci 8:59CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hitier M, Sato G, Zhang Y-F, Zheng Y, Besnard S, Smith PF, Curthoys IS (2016) Anatomy and surgical approach of rat’s vestibular sensors and nerves. J Neurosci Methods 270:1–8CrossRefPubMedGoogle Scholar
  27. Hitier, M, Sato G, Zhang Y-F, Besnard S, Smith PF (2018) The effects of electrical stimulation of the rat vestibular labyrinth on c-Fos expression in the hippocampus. Neurosci Lett 677: 60–64CrossRefPubMedGoogle Scholar
  28. Horii A, Takeda N, Mochizuki T, Okakura-Mochizuki K, Yamamoto Y, Yamatodani A (1994) Effects of vestibular stimulation on acetylcholine release from rat hippocampus: an in vivo microdialysis study. J Neurophysiol 72(2):605–611CrossRefPubMedGoogle Scholar
  29. Isu N, Graf W, Sato H, Kushiro K, Zakir M, Imagawa M, Uchino Y (2000) Sacculo–ocular reflex connectivity in cats. Exp Brain Res 131(3):262–268CrossRefPubMedGoogle Scholar
  30. Jamon M (2014) The development of the vestibular system and related functions in mammals: Impact of gravity. Front Integr Neurosci 8:11CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jeffery N, Cox PG (2010) Do agility and skull architecture influence the geometry of the mammalian vestibulo-ocular reflex? J Anat 216(4):496–509CrossRefPubMedPubMedCentralGoogle Scholar
  32. Khanna S, Porter JD (2001) Evidence for rectus extraocular muscle pulleys in rodents. Investig Ophthalmol Vis Sci 42(9):1986–1992Google Scholar
  33. Kitajima N, Sugita-Kitajima A, Bai R, Sasaki M, Sato H, Imagawa M, Kawamoto E, Suzuki M, Uchino Y (2006) Axonal pathways and projection levels of anterior semicircular canal nerve-activated vestibulospinal neurons in cats. Neurosci Lett 406(1–2):1–5CrossRefPubMedGoogle Scholar
  34. Kremmyda O, Hüfner K, Flanagin VL, Hamilton DA, Linn J, Strupp M, Jahn K, Brandt T (2016) Beyond dizziness: virtual navigation, spatial anxiety and hippocampal volume in bilateral vestibulopathy. Front Hum Neurosci 10:139CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kushiro K, Bai R, Kitajima N, Sugita-Kitajima A, Uchino Y (2008) Properties and axonal trajectories of posterior semicircular canal nerve-activated vestibulospinal neurons. Exp Brain Res 191(3):257–264CrossRefPubMedGoogle Scholar
  36. Lopez C (2013) A neuroscientific account of how vestibular disorders impair bodily self-consciousness. Front Integr Neurosci 7:91CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lopez C (2016) The vestibular system: balancing more than just the body. Curr Opin Neurol 29(1):74–83CrossRefPubMedGoogle Scholar
  38. Lopez C, Blanke O (2011) The thalamocortical vestibular system in animals and humans. Brain Res Rev 67(1–2):119–146CrossRefPubMedGoogle Scholar
  39. Lopez C, Elzière M (2018) Out-of-body experience in vestibular disorders—a prospective study of 210 patients with dizziness. Cortex 104:193–206CrossRefPubMedGoogle Scholar
  40. Martin T, Mauvieux B, Bulla J, Quarck G, Davenne D, Denise P, Philoxène B, Besnard S (2015) Vestibular loss disrupts daily rhythm in rats. J Appl Physiol 118(3):310–318CrossRefPubMedGoogle Scholar
  41. McCrea R, Strassman AA, Highstein SM (1987) Anatomical and physiological characteristics of vestibular neurons mediating the vertical vestibulo-ocular reflexes of the squirrel monkey. J Comp Neurol 264(4):571–594CrossRefPubMedGoogle Scholar
  42. Misslisch H, Hess BJM (2000) Three-dimensional vestibuloocular reflex of the monkey: optimal retinal image stabilization versus Listing’s Law. J Neurophysiol 83(6):3264–3276CrossRefPubMedGoogle Scholar
  43. Misslisch H, Tweed D (2001) Neural and mechanical factors in eye control. J Neurophysiol 86(4):1877–1883CrossRefPubMedGoogle Scholar
  44. Moser I, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Ann Rev Neurosci 31:69–89CrossRefPubMedGoogle Scholar
  45. Moser I, Vibert D, Caversaccio MD, Mast F (2017) Impaired math achievement in patients with acute vestibular neuritis. Neuropsychologia 107:1–8CrossRefPubMedGoogle Scholar
  46. O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51(1):78–109CrossRefPubMedGoogle Scholar
  47. Pellionisz A, Graf W (1987) Tensor network model of the ‘three-neuron vestibulo-ocular reflex-arc’ in cat. J Theor Neurobiol 5:127–151Google Scholar
  48. Prince JH, Diesem CD, Eglitis I, Ruskell GL (1960) Anatomy and histology of the eye and orbit in domestic animals. Anatomy and histology of the eye and orbit in domestic animals. https://www.cabdirect.org/cabdirect/abstract/19622201306. Accessed 20 Feb 2018
  49. Ruskell GL, Haugen I-BK, Bruenech JR, van der Werf (2005) Double insertions of extraocular rectus muscles in humans and the pulley theory. J Anat 206(3):295–306CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schilling R (1919) Ein beitrag zur funktion des vestibular apparates. Eur Arch Oto-Rhino-Laryngol 104(3):120–156CrossRefGoogle Scholar
  51. Simpson JI, Graf W (1981) Eye muscle geometry and compensatory eye movements in lateral-eyed and frontal-eyed animals. Ann NY Acad Sci 374(1):20–30CrossRefPubMedGoogle Scholar
  52. Smith PF (2012) Dyscalculia and vestibular function. Med Hypothese 79(4):493–496CrossRefGoogle Scholar
  53. Smith PF (2017) The vestibular system and cognition. Curr Opin Neurol 30(1):84–89CrossRefPubMedGoogle Scholar
  54. Smith PF, Darlington CL (2013) Personality changes in patients with vestibular dysfunction. Front Hum Neurosci 7:678PubMedPubMedCentralGoogle Scholar
  55. Smith PF, Zheng Y (2013) From ear to uncertainty: vestibular contributions to cognitive function. Front Integr Neurosci 7:84CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sprent P, Smeeton NC (2007) Applied nonparametric statistical methods. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  57. Suzuki JI, Cohen B (1964) Head, eye, body and limb movements from semi-circular canal nerves. Exp Neurol 10:393–405CrossRefPubMedGoogle Scholar
  58. Suzuki JI, Cohen B, Bender MB (1964) Compensatory eye movements induced by vertical semicircular canal stimulation. Exp Neurol 9(2):137–160CrossRefPubMedGoogle Scholar
  59. Taube JS (2007) The head direction signal: origins and sensory-motor integration. Ann Rev Neurosci 30:181–207CrossRefPubMedGoogle Scholar
  60. Thurtell MJ, Kunin M, Raphan T (2000) Role of muscle pulleys in producing eye position-dependence in the angular vestibuloocular reflex: a model-based study. J Neurophysiol 84(2):639–650CrossRefPubMedGoogle Scholar
  61. Tokumasu K, Goto K, Cohen B (1969) Eye movements from vestibular nuclei stimulation in monkeys. Ann Otol Rhinol Laryngol 78(5):1105–1119CrossRefPubMedGoogle Scholar
  62. Tokumasu K, Suzuki JI, Goto K (1971) A study of the current spread of electric stimulation of the individual utricular and ampullary nerves. Acta Oto-Laryngol 71(1–6):313–318CrossRefGoogle Scholar
  63. Uchino Y, Kushiro K (2011) Differences between otolith- and semicircular canal-activated neural circuitry in the vestibular system. Neurosci Res 71(4):315–327CrossRefPubMedGoogle Scholar
  64. Uchino Y, Suzuki S, Watanabe S (1980) Vertical semicircular canal inputs to cat extraocular motoneurons. Exp Brain Res 41(1):45–53CrossRefPubMedGoogle Scholar
  65. Van de Berg R, Guinand N, Guyot J-P, Kingma H, Stokroos RJ (2012) The modified ampullar approach for vestibular implant surgery: feasibility and its first application in a human with a long-term vestibular loss. Front Neurol 3:18CrossRefPubMedPubMedCentralGoogle Scholar
  66. Van de Berg R, Guinand N, Nguyen TA, Ranieri M, Cavuscens S, Guyot JP, Stokroos R, Kingma H, Perez-Fornos A (2015) The vestibular implant: frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans. Front Syst Neurosci 8:255PubMedPubMedCentralGoogle Scholar
  67. Wackym PA, Balaban CD, Mackay HT, Wood SJ, Lundell CJ, Carter DM, Siker DA (2016) Longitudinal cognitive and neurobehavioral functional outcomes before and after repairing otic capsule dehiscence. Otol Neurotol 37(1):70–82CrossRefPubMedGoogle Scholar
  68. Waele CDE, Graf W, Josset P, Vidal PP (1989) A radiological analysis of the postural syndromes following hemilabyrinthectomy and selective canal and otolith lesions in the guinea pig. Exp Brain Res 77(1):166–182CrossRefPubMedGoogle Scholar
  69. Wall C 3rd, Kos MI, Guyot J-P (2007) Eye Movements in response to electric stimulation of the human posterior ampullary nerve. Ann Otol Rhinol Laryngol 116(5):369–374CrossRefPubMedGoogle Scholar
  70. Yamamoto M, Shimoyama I, Highstein SM (1978) Vestibular nucleus neurons relaying excitation from the anterior canal to the oculomotor nucleus. Brain Res 148(1):31–42CrossRefPubMedGoogle Scholar
  71. Yates BJ, Bronstein AM (2005) The effects of vestibular system lesions on autonomic regulation: observations, mechanisms, and clinical implications. J Vestib Res 15(3):119–129PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Otolaryngology Head and Neck SurgeryCHU de CaenCaenFrance
  2. 2.Department of AnatomyUNICAEN, Normadie UniversityCaenFrance
  3. 3.UNICAEN, University of Normandy, INSERM U1075, CHU de CaenCaenFrance
  4. 4.Department of OtolaryngologyUniversity of Tokushima School of MedicineTokushimaJapan
  5. 5.Department of Pharmacology and Toxicology, School of Biomedical Sciences and Brain Health Research CentreUniversity of OtagoDunedinNew Zealand
  6. 6.Brain Research New Zealand Centre of Research ExcellenceAucklandNew Zealand
  7. 7.Eisdell Moore Centre for Hearing and Balance ResearchUniversity of AucklandAucklandNew Zealand
  8. 8.Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK

Personalised recommendations