Journal of Comparative Physiology A

, Volume 204, Issue 5, pp 487–503 | Cite as

Characterization and modelling of looming-sensitive neurons in the crab Neohelice

Original Paper
  • 37 Downloads

Abstract

Looming-sensitive neurons (LSNs) are motion-sensitive neurons tuned for detecting imminent collision. Their main characteristic is the selectivity to looming (a 2D representation of an object approach), rather than to receding stimuli. We studied a set of LSNs by performing surface extracellular recordings in the optic nerve of Neohelice granulata crabs, and characterized their response against computer-generated visual stimuli with different combinations of moving edges, highlighting different components of the optical flow. In addition to their selectivity to looming stimuli, we characterized other properties of these neurons, such as low directionality; reduced response to sustained excitement; and an inhibition phenomenon in response to visual stimuli with dense optical flow of expansion, contraction, and translation. To analyze the spatio-temporal processing of these LSNs, we proposed a biologically plausible computational model which was inspired by previous computational models of the locust lobula giant motion detector (LGMD) neuron. The videos seen by the animal during electrophysiological experiments were applied as an input to the model which produced a satisfactory fit to the measured responses, suggesting that the computation performed by LSNs in a decapod crustacean appears to be based on similar physiological processing previously described for the LGMD in insects.

Keywords

Motion detection Collision avoidance Looming Crustacean Vision 

Abbreviations

DCMD

Descending contralateral movement detector

FFE

Feed-forward excitation

FFI

Feed-forward inhibition

LGMD

Lobula giant motion detector

LI

Lateral inhibition

LSN

Looming-sensitive neuron

MLG

Monostratified lobula giant

MSN

Motion-sensitive neuron

OF

Optical flow

ROF

Rotational optical flow

TOF

Translational optical flow

Notes

Acknowledgements

We thank D. Tomsic, M. Berón de Astrada and F. Magani for fruitful discussions and corrections to this manuscript. This work describes research partially funded by National Council of Scientific and Technical Research (CONICET), National Agency of Science and Technology (ANPCyT), Grant Number PICT 2012-2765.

Compliance with ethical standards

Conflict of interest

The authors declare no competing or financial interests.

Ethical standard

All experiments on animals described above were performed in accordance with applicable national legislation and institutional guidelines for the care and use of animals.

References

  1. Berón de Astrada M, Tomsic D (2002) Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura). J Comp Physiol A 188:539–551.  https://doi.org/10.1007/s00359-002-0328-4 CrossRefGoogle Scholar
  2. Berón de Astrada M, Bengochea M, Medan V, Tomsic D (2012) Regionalization in the eye of the grapsid crab Neohelice granulata (= Chasmagnathus granulatus): variation of resolution and facet diameters. J Comp Physiol A 198:173–180.  https://doi.org/10.1007/s00359-011-0697-7 CrossRefGoogle Scholar
  3. Berón de Astrada M, Bengochea M, Sztarker J, Delorenzi A, Tomsic D (2013) Behaviorally related neural plasticity in the arthropod optic lobes. Curr Biol 23:1389–1398.  https://doi.org/10.1016/j.cub.2013.05.061 CrossRefPubMedGoogle Scholar
  4. Borst A (1991) Fly visual interneurones responsive to image expansion. Zool Jahrb Physiol 95:305–313Google Scholar
  5. Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A 188:419–437.  https://doi.org/10.1007/s00359-002-0316-8 CrossRefGoogle Scholar
  6. Dunn TW, Gebhardt C, Naumann EA, Riegler C, Ahrens MB, Engert F, Del Bene F (2016) Neural circuits underlying visually evoked escapes in larval zebrafish. Neuron 89:613–628.  https://doi.org/10.1016/j.neuron.2015.12.021 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fotowat H, Gabbiani F (2011) Collision detection as a model for sensory-motor integration. Annu Rev Neurosc 4:1–19.  https://doi.org/10.1146/annurev-neuro-061010-113632 CrossRefGoogle Scholar
  8. Fotowat H, Harrison R, Gabbiani F (2011) Multiplexing of motor information in the discharge of a collision detecting neuron during escape behaviors. Neuron 69:147–158.  https://doi.org/10.1016/j.neuron.2010.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gabbiani F, Krapp HG, Laurent G (1999) Computation of object approach by a wide field, motion-sensitive neuron. J Neurosci 19:1122–1141CrossRefPubMedGoogle Scholar
  10. Gabbiani F, Krapp HG, Koch C, Laurent G (2002) Multiplicative computation in a visual neuron sensitive to looming. Nature 21:320–324.  https://doi.org/10.1038/nature01190 CrossRefGoogle Scholar
  11. Glantz RM (1974) Defense reflex and motion detector responsiveness to approaching targets: the motion detector trigger to the defense reflex pathway. J Comp Physiol 95:297–314CrossRefGoogle Scholar
  12. Gray JR, Blincow E, Robertson RM (2010) A pair of motion-sensitive neurons in the locust encode approaches of a looming object. J Comp Physiol A 196:927–938.  https://doi.org/10.1007/s00359-010-0576-7 CrossRefGoogle Scholar
  13. Hemmi JM, Tomsic D (2012) The neuroethology of escape in crabs: from sensory ecology to neurons and back. Curr Opin Neurobiol 22:194–200.  https://doi.org/10.1016/j.conb.2011.11.012 CrossRefPubMedGoogle Scholar
  14. Horseman BG, Macauley MW, Barnes WJP (2011) Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas. J Exp Biol 214(9):1586–1598CrossRefPubMedGoogle Scholar
  15. Jones PW, Gabbiani F (2010) Synchronized neural input shapes stimulus selectivity in a collision-detecting neuron. Curr Biol 20(22):2052–2057CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jones PW, Gabbiani F (2012) Logarithmic compression of sensory signals within the dendritic tree of a collision-sensitive neuron. J Neurosci 32(14):4923–4934CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kostarakos K, Hedwig B (2017) Surface electrodes record and label brain neurons in insects. J Neurophysiol.  https://doi.org/10.1152/jn.00490.2017 PubMedGoogle Scholar
  18. Krapp HG, Gabbiani F (2005) Spatial distribution of inputs and local receptive field properties of a wide-field, looming sensitive neuron. J Neurophysiol 93:2240–2253.  https://doi.org/10.1152/jn.00965.2004 CrossRefPubMedGoogle Scholar
  19. Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384:463–466.  https://doi.org/10.1038/384463a0 CrossRefPubMedGoogle Scholar
  20. Laurent G, Gabbiani F (1998) Collision-avoidance: nature’s many solutions. Nat Neurosci 1:261–263CrossRefPubMedGoogle Scholar
  21. Medan V, Oliva D, Tomsic D (2007) Characterization of lobula giant neurons responsive to visual stimuli that elicit escape reactions in the crab Chasmagnathus. J Neurophys 98:2414–2428.  https://doi.org/10.1152/jn.00803.2007 CrossRefGoogle Scholar
  22. Nelson RC, Aloimonos J (1988) Finding motion parameters from spherical motion fields (or the advantages of having eyes in the back of your head). Biol Cybern 58:261–273CrossRefPubMedGoogle Scholar
  23. Nilsson DE, Osorio D (1998) Homology and parallelism in arthropod sensory processing. Arthropod relationships. Springer, Netherlands, pp 333–347CrossRefGoogle Scholar
  24. O’Shea M, Rowell CHF (1975) Protection from habituation by lateral inhibition. Nature 254:53–55CrossRefPubMedGoogle Scholar
  25. Oliva D (2015) Collision avoidance models, visually guided. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience. Springer-Verlag, Berlin Heidelberg, pp 626–645Google Scholar
  26. Oliva D, Tomsic D (2014) Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice. J Neurophysiol 112:1477–1490.  https://doi.org/10.1152/jn.00921.2013 CrossRefPubMedGoogle Scholar
  27. Oliva D, Tomsic D (2016) Object approach computation by a giant neuron and its relationship with the speed of escape in the crab Neohelice. J Exp Biol 219:3339–3352.  https://doi.org/10.1242/jeb.136820 CrossRefPubMedGoogle Scholar
  28. Oliva D, Medan V, Tomsic D (2007) Escape behaviour and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). J Exp Biol 210:865–880.  https://doi.org/10.1242/jeb.02707 CrossRefPubMedGoogle Scholar
  29. Peron SP, Gabbiani F (2009) Spike frequency adaptation mediates looming stimulus selectivity in a collision detecting neuron. Nat Neurosci 12:318–326.  https://doi.org/10.1038/nn.2259 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Preuss T, Osei-Bonsu PE, Weiss SA, Wang C, Faber DS (2006) Neural representation of object approach in a decision-making motor circuit. J Neurosci 26:3454–3464.  https://doi.org/10.1523/JNEUROSCI.5259-05.2006 CrossRefPubMedGoogle Scholar
  31. Quian Quiroga R (2007) Spike sorting. Scholarpedia 2(12):3583.  https://doi.org/10.4249/scholarpedia.3583 CrossRefGoogle Scholar
  32. Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16:1661–1687.  https://doi.org/10.1162/089976604774201631 CrossRefPubMedGoogle Scholar
  33. Rind FC, Bramwell DI (1996) Neural network based on the input organization of an identified neuron signaling impending collision. J Neurophysiol 75:967–985CrossRefPubMedGoogle Scholar
  34. Rind FC, Simmons PJ (1992) Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. J Neurophysiol 68:1654–1666CrossRefPubMedGoogle Scholar
  35. Rind FC, Simmons PJ (1999) Seeing what is coming: building collision-sensitive neurones. Trends Neurosci 22:215–20CrossRefPubMedGoogle Scholar
  36. Rind FC, Wernitznig S, Pölt P, Zankel A, Gütl D, Sztarker J, Leitinger G (2016) Two identified looming detectors in the locust: ubiquitous lateral connections among their inputs contribute to selective responses to looming objects. Sci Rep 6:35525.  https://doi.org/10.1038/srep35525 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rosner R, Homberg U (2013) Widespread sensitivity to looming stimuli and small moving objects in the central complex of an insect brain. J Neurosci 33(19):8122–8133CrossRefPubMedGoogle Scholar
  38. Rowell CF, O’Shea M, Williams JL (1977) The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli. J Exp Biol 68:157–185Google Scholar
  39. Santer RD, Yamawaki Y, Rind FC, Simmons PJ (2008) Preparing for escape: an examination of the role of the DCMD neuron in locust escape jumps. J Comp Physiol A 194:69–77.  https://doi.org/10.1007/s00359-007-0289-8 CrossRefGoogle Scholar
  40. Srinivasan MV, Zhang S (2004) Visual motor computations in insects. Annu Rev Neurosci 27:679–696.  https://doi.org/10.1146/annurev.neuro.27.070203.144343 CrossRefPubMedGoogle Scholar
  41. Strausfeld NJ (2005) The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev 34:235–256CrossRefGoogle Scholar
  42. Sztarker J, Strausfeld NJ, Tomsic D (2005) Organization of optic lobes that support motion detection in a semiterrestrial crab. J Comp Neurol 493:396–411.  https://doi.org/10.1002/cne.20755 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tomsic D, Sztarker J, Berón de Astrada MB, Oliva D, Lanza E (2017) The predator and prey behaviors of crabs: from ecology to neural adaptations. J Exp Biol 220(13):2318–2327CrossRefPubMedGoogle Scholar
  44. Wang Y, Frost BJ (1992) Time to collision is signalled by neurons in the nucleus rotundus of pigeons. Nature 356:236–238.  https://doi.org/10.1038/356236a0 CrossRefPubMedGoogle Scholar
  45. Wasserman L (2004) All of statistics: a concise course in statistical inference. Springer, New YorkCrossRefGoogle Scholar
  46. Wild J, Prekopcsak Z, Sieger T, Novak D, Jech R (2012) Performance comparison of extracellular spike sorting algorithms for single-channel recordings. J Neurosci Methods 203:369–376.  https://doi.org/10.1016/j.jneumeth.2011.10.013 CrossRefPubMedGoogle Scholar
  47. Yamawaki Y, Toh Y (2009) Responses of descending neurons to looming stimuli in the praying mantis Tenodera aridifolia. J Comp Physiol A 195:253–264.  https://doi.org/10.1007/s00359-008-0403-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBernalArgentina

Personalised recommendations