Advertisement

Clustering Analysis of a Dissimilarity: a Review of Algebraic and Geometric Representation

  • D. FortinEmail author
Article
  • 30 Downloads

Abstract

It is customary to split clustering analysis into an optimization level, then a (preferably) graphical representation level to take benefit of human vision for an effective understanding of (big) data structure. This article aspires to clarify relationships between clustering, both its process and its representation, and the underlying structural graph properties, both algebraic and geometric, starting from the mere knowledge of a dissimilarity matrix among items, possibly with missing entries. It is inspired by an analogous work on seriation problem, relating Robinson property in a dissimilarity with missing entries, with interval graph recognition using a sequence of 4 lexicographic breadth first searches.

Keywords

Clustering Dissimilarity measure Matching Ear decomposition LexBFS LexDFS Schnyder woods 

Notes

Acknowledgments

An anonymous referee deeply interacts with the manuscript so that it brings many clarifications and improvements. The author is grateful to him/her for the deep and accurate reviewing.

References

  1. Alam, M.J., Fink, M., Pupyrev, S. (2016). The bundled crossing number (pp. 399–412). Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-50106-2_31. ISBN 978-3-319-50106-2.zbMATHGoogle Scholar
  2. Aronov, B., Erdős, P., Goddard, W., Kleitman, D.J., Klugerman, M., Pach, J., Schulman, L.J. (1994). Crossing families. Combinatorica, 14(2), 127–134.  https://doi.org/10.1007/BF01215345. ISSN 1439-6912.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bailey, R.F., Newman, M., Stevens, B. (2014). A note on packing spanning trees in graphs and bases in matroids. Australasian Journal of Combinatorics, 59(1), 24–38.MathSciNetzbMATHGoogle Scholar
  4. Berry, A., & Bordat, J.-P. (1998). Separability generalizes Dirac’s theorem. Discrete Applied Mathematics, 84(1–3), 43–53.  https://doi.org/10.1016/S0166-218X(98)00005-5. ISSN 0166-218X.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bertsekas, D.P., & Castañon, D.A. (1992). A forward/reverse auction algorithm for asymmetric assignment problems. Computational Optimization and Applications, 1 (3), 277–297. ISSN 0926-6003.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Blum, N. (2015). Maximum matching in general graphs without explicit consideration of blossoms revisited. CoRR, arXiv:1509.04927.
  7. Burkard, R., Deineko, V., van Dal, R., van der Veen, J., Woeginger, G. (1998). Well-solvable special cases of the traveling salesman problem: a survey. SIAM Review, 40(3), 496–546.  https://doi.org/10.1137/S0036144596297514.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Buš, L., & Tvrdík, P. (2009). Towards auction algorithms for large dense assignment problems. Computational Optimization and Applications, 43(3), 411–436.  https://doi.org/10.1007/s10589-007-9146-5. ISSN 0926-6003.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Cabello, S., Colin de Verdière, É., Lazarus, F. (2016). Finding shortest non-trivial cycles in directed graphs on surfaces. Journal of Computational Geometry, 7(1), 123–148.MathSciNetzbMATHGoogle Scholar
  10. Castelli Aleardi, L., Fusy, E., Lewiner, T. (2009). Schnyder woods for higher genus triangulated surfaces, with applications to encoding. Discrete and Computational Geometry, 42(3), 489–516.  https://doi.org/10.1007/s00454-009-9169-z. https://hal.inria.fr/hal-00712046. Extended version of the article appeared in the Proc. of the ACM SoCG 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Chambers, E.W., Erickson, J., Nayyeri, A. (2009). Homology flows, cohomology cuts. In Proceedings of the forty-first annual ACM symposium on theory of computing, STOC ’09.  https://doi.org/10.1145/1536414.1536453. ISBN 978-1-60558-506-2. http://doi.acm.org/10.1145/1536414.1536453 (pp. 273–282). New York: ACM.
  12. Deineko, V. (2004). New exponential neighbourhood for polynomially solvable TSPs. Electronic Notes in Discrete Mathematics, 17, 111–115. ISSN 1571-0653.  https://doi.org/10.1016/j.endm.2004.03.015. http://www.sciencedirect.com/science/article/pii/S1571065304010236.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Deineko, V., Klinz, B., Woeginger, G.J. (2006). Four point conditions and exponential neighborhoods for symmetric TSP. In Proceedings of the seventeenth annual ACM-SIAM symposium on discrete algorithm, SODA ’06. ISBN 0-89871-605-5. http://dl.acm.org/citation.cfm?id=1109557.1109617 (pp. 544–553). Philadelphia: Society for Industrial and Applied Mathematics.
  14. Durocher, S., & Mondal, D. (2015). Plane 3-trees, Embeddability and approximation. SIAM Journal on Discrete Mathematics, 29(1), 405–420.  https://doi.org/10.1137/140964710.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Duxbury, P., Granlund, L., Gujarathi, S., Juhas, P., Billinge, S. (2016). The unassigned distance geometry problem. Discrete Applied Mathematics, 204, 117–132.  https://doi.org/10.1016/j.dam.2015.10.029. ISSN 0166-218X, http://www.sciencedirect.com/science/article/pii/S0166218X15005168.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Edmonds, J. (1987). Paths, trees, and flowers. In I. Gessel, G.-C. Rota (Eds.), Classic Papers in Combinatorics (pp. 361–379). Boston: Birkhäuser Boston.  https://doi.org/10.1007/978-0-8176-4842-8_26.
  17. Erickson, J., & Whittlesey, K. (2005). Greedy optimal homotopy and homology generators. In Proceedings of the sixteenth annual ACM-SIAM symposium on discrete algorithms, SODA ’05. ISBN 0-89871-585-7. http://dl.acm.org/citation.cfm?id=1070432.1070581 (pp. 1038–1046). Philadelphia: Society for Industrial and Applied Mathematics.
  18. Felsner, S., & Zickfeld, F. (2008). Schnyder woods and orthogonal surfaces. Discrete & Computational Geometry, 40(1), 103–126.  https://doi.org/10.1007/s00454-007-9027-9, ISSN 1432-0444.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Fortin, D. (2017). Robinsonian matrices: recognition challenges. Journal of Classification, 34(2), 191–222.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Fortin, D., & Tseveendorj, I. (2009). A trust branching path heuristic for zero–one programming. European Journal of Operational Research, 197(2), 439–445.  https://doi.org/10.1016/j.ejor.2008.06.033. ISSN 0377-2217. http://www.sciencedirect.com/science/article/pii/S0377221708004967.CrossRefzbMATHGoogle Scholar
  21. Gonçalves, D., & Lévêque, B. (2012). Toroidal maps: Schnyder woods, orthogonal surfaces and straight-line representations. CoRR, arXiv:1202.0911.
  22. Habib, M., McConnell, R., Paul, C., Viennot, L. (2000). Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical Computer Science, 234(1–2), 59–84.  https://doi.org/10.1016/S0304-3975(97)00241-7. ISSN 0304-3975.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Hanrot, G., Pujol, X., Stehlé, D. (2011). Algorithms for the shortest and closest lattice vector problems (pp. 159–190). Berlin: Springer.zbMATHGoogle Scholar
  24. Holten, D., & van Wijk, J.J. (2009). Force-directed edge bundling for graph visualization. In Proceedings of the 11th Eurographics/IEEE - VGTC conference on visualization, EuroVis’09 (pp. 983–998). Chichester: The Eurographs Association & #38; Wiley #38, DOI  https://doi.org/10.1111/j.1467-8659.2009.01450.x, (to appear in print).
  25. Hruz, T., & Fortin, D. (1993). Parallelism in Hermite and Smith normal forms. Technical report, INRIA. http://hal.inria.fr/inria-00074594.
  26. Johnson, D.B. (1975). Finding all the elementary circuits of a directed graph. SIAM Journal on Computing, 4(1), 77–84.  https://doi.org/10.1137/0204007.MathSciNetCrossRefzbMATHGoogle Scholar
  27. Kaiser, T. (2012). A short proof of the tree-packing theorem. Discrete Mathematics, 312(10), 1689–1691.  https://doi.org/10.1016/j.disc.2012.01.020.MathSciNetCrossRefzbMATHGoogle Scholar
  28. Kolmogorov, V. (2009). Blossom v: a new implementation of a minimum cost perfect matching algorithm. Mathematical Programming Computation, 1(1), 43–67.  https://doi.org/10.1007/s12532-009-0002-8. ISSN 1867-2957.MathSciNetCrossRefzbMATHGoogle Scholar
  29. Kotrbčík, M., & Škoviera, M. (2012). Matchings, cycle bases, and the maximum genus of a graph. The Electronic Journal of Combinatorics, 19(3), 1–12.MathSciNetzbMATHGoogle Scholar
  30. Kundu, S. (1974). Bounds on the number of disjoint spanning trees. Journal of Combinatorial Theory, Series B, 17(2), 199–203.  https://doi.org/10.1016/0095-8956(74)90087-2. ISSN 0095-8956. http://www.sciencedirect.com/science/article/pii/0095895674900872.MathSciNetCrossRefzbMATHGoogle Scholar
  31. Li, H., Li, X., Mao, Y., Yue, J. (2015). Note on the spanning-tree packing number of lexicographic product graphs. Discrete Mathematics, 338(5), 669–673.  https://doi.org/10.1016/j.disc.2014.12.007. ISSN 0012-365X. www.sciencedirect.com/science/article/pii/S0012365X14004543.MathSciNetCrossRefzbMATHGoogle Scholar
  32. Mohar, B. (2009). The genus crossing number. ARS Mathematica Contemporanea, 2(2). ISSN 1855-3974. http://amc-journal.eu/index.php/amc/article/view/21.
  33. Newman, M. (1972). Integral matrices. Pure and applied mathematics: a series of monographs and textbooks. New York: Academic Press. ISBN 9780125178501. https://books.google.fr/books?id=bpHglAEACAAJ.Google Scholar
  34. Ren, H., Zhao, H., Li, H. (2009). Fundamental cycles and graph embeddings. Science in China Series A: Mathematics, 52(9), 1920–1926. ISSN 1862-2763.  https://doi.org/10.1007/s11425-009-0041-7.MathSciNetCrossRefzbMATHGoogle Scholar
  35. Schmidt, J.M. (2014). The Mondshein sequence (pp. 967–978). Berlin: Springer.zbMATHGoogle Scholar
  36. Schnyder, W. (1989). Planar graphs and poset dimension. Order, 5, 323–343, 12.  https://doi.org/10.1007/BF00353652.MathSciNetCrossRefzbMATHGoogle Scholar
  37. Schulze, M. (2018). The schulze method of voting. CoRR, arXiv:1804.02973.
  38. Storjohann, A. (1998). Computing Hermite and Smith normal forms of triangular integer matrices. Linear Algebra and its Applications, 282(1), 25–45. ISSN 0024-3795.  https://doi.org/10.1016/S0024-3795(98)10012-5. http://www.sciencedirect.com/science/article/pii/S0024379598100125.MathSciNetCrossRefzbMATHGoogle Scholar
  39. Xu, S.-J., Li, X., Liang, R. (2013). Moplex orderings generated by the LexDFS algorithm. Discrete Applied Mathematics, 161(13–14), 2189–2195. ISSN 0166-218X.  https://doi.org/10.1016/j.dam.2013.02.028.MathSciNetCrossRefzbMATHGoogle Scholar
  40. Xuong, N.H. (1979). Upper-embeddable graphs and related topics. Journal of Combinatorial Theory, Series B, 26(2), 226–232.  https://doi.org/10.1016/0095-8956(79)90059-5. ISSN 0095-8956. http://www.sciencedirect.com/science/article/pii/0095895679900595.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Classification Society 2019

Authors and Affiliations

  1. 1.InriaParisFrance

Personalised recommendations