Experiments in Fluids

, 61:10 | Cite as

Advances in interferometric techniques for the analysis of the three-dimensional flow in a lid-driven cylindrical cavity

  • Ana M. López
  • Julia Lobera
  • Nieves Andrés
  • M. Pilar Arroyo
  • Virginia PaleroEmail author
  • Irene Sancho
  • Antón Vernet
  • Jordi Pallarés
Research Article


In this work, a qualitative and quantitative characterization of the three-dimensional flow in a lid-driven cylindrical cavity with different optical techniques is presented. Mach–Zehnder interferometry and photographic techniques have been used for a qualitative description of some flow features. However, the real challenge is to obtain quantitative measurements, as the cavity dimensions and geometry prevent the application of 3D digital techniques for measuring the flow velocity in the whole cavity with enough spatial resolution. Digital in-line holography was applied to the measure of the vortex-breakdown bubble that appears near the cavity bottom at Re = 2000. A 22 × 22 × 80 mm3 volume was recorded, its longest dimension parallel to the camera optical axis. This large volume in a liquid fluid combined with a high particle density forces us to develop new analysis strategies. Holograms have been analyzed using a new method, called Adaptive Cross Correlation with Tracking From Beginning, which includes the use of the reconstructed complex amplitude for particle localization. Particle tracking is based on the three-dimensional cross correlation of three-dimensional interrogation windows. The particle set defined in the first hologram is always used to find the particle position in subsequent holograms. This method provides an accurate 3D velocity map and the vortex-breakdown bubble spatial structure. Experimental and numerical data show a very good agreement. A new criterion for determining the accuracy in the particle position along the optical axis is introduced, achieving a spatial resolution of 0.1 mm. This tracking method can be applied not only to laminar flows but also to turbulent flows.

Graphic abstract



The authors would like to thank the Spanish Ministerio de Economía y Competitividad (MINECO) and European Commission FEDER program (project DPI2016-75791-C2-2-P/1-P) and Gobierno de Aragón- Feder 2014-2020 “Construyendo Europa desde Aragon”. (Laser Optical Technology—E44_17R- research group) for the financial support.


  1. Arroyo MP, Hinsch KD (2008) Recent developments of PIV towards 3D measurements. In: Schroder A, Willert CE (eds) Particle image velocimetry: new developments and recent applications. Springer, New York, pp 127–154CrossRefGoogle Scholar
  2. Brøns M, Shen WZ, Sørensen JN, Zhu WJ (2007) The influence of imperfections on the flow structure of steady vortex breakdown bubbles. J Fluid Mech 578:453–466CrossRefGoogle Scholar
  3. Brown GL, Lopez JM (1990) Axisymmetric vortex breakdown Part 2. Physical mechanisms. J Fluid Mech 221:553–576MathSciNetCrossRefGoogle Scholar
  4. Cabeza C, Sarasúa G, Martí AC, Bove I, Varela S, Usera G, Vernet A (2010) Influence of coaxial cylinders on the vortex breakdown in a closed flow. Eur J Mech B Fluids 29(3):201–207CrossRefGoogle Scholar
  5. Chen Y, Guildenbecher DR, Hoffmeister KNG, Cooper MA, Stauffacher HL, Oliver MS, Washburn EB (2017) Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry. Combust Flame 182:225–237CrossRefGoogle Scholar
  6. Coupland JM, Lobera-Salazar J, Halliwell NA (2000) Fundamental limitations to the spatial resolution and flow volume that can be mapped using holographic particle image velocimetry. In: Proc. SPIE 4076, Optical Diagnostics for Industrial Applications.
  7. Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 4:933–947CrossRefGoogle Scholar
  8. Escudier MP (1984) Observations of the flow produced in a cylindrical container by a rotating endwall. Exp Fluids 2(4):189–196CrossRefGoogle Scholar
  9. Gelfgat AY, Bar-Yoseph PZ, Solan A (1996) Stability of confined swirling flow with and without vortex breakdown. J Fluid Mech 311:1–36MathSciNetCrossRefGoogle Scholar
  10. Gopalan B, Malkiel E, Katz J (2008) Experimental investigation of turbulent diffusion of slightly buoyant droplets in locally isotropic turbulence. Phys Fluids 20(9):095102CrossRefGoogle Scholar
  11. Katz J, Sheng J (2010) Applications of holography in fluid mechanics and particle dynamics. Rev Fluid Mech 42:531–555CrossRefGoogle Scholar
  12. Lebon B, Perret G, Coëtmellec S, Godard G, Gréhan G, Lebrun D, Brossard J (2016) A digital holography set-up for 3D vortex flow dynamics. Exp Fluids 57:103. CrossRefGoogle Scholar
  13. Lobera J, Andrés N, Arroyo MP (2003) Digital image plane holography as a three-dimensional flow velocimetry technique. SPIE 4933:279–284Google Scholar
  14. Lobera J, Andrés N, Arroyo MP (2004) Digital speckle pattern interferometry as a holographic velocimetry technique. Measure Sci Technol 15:718–724CrossRefGoogle Scholar
  15. Lopez JM (1990) Axisymmetric vortex breakdown Part 1. Confined swirling flow. J Fluid Mech 221:533–552MathSciNetCrossRefGoogle Scholar
  16. Lopez JM, Perry AD (1992) Axisymmetric vortex breakdown. Part 3 Onset of periodic flow and chaotic advection. J Fluid Mech 234:449–471MathSciNetCrossRefGoogle Scholar
  17. Lucca-Negro O, O’Doherty T (2001) Vortex breakdown: a review. Prog Energy Combust Sci 27(4):431–481CrossRefGoogle Scholar
  18. Palero V, Lobera J, Arroyo MP (2010) Three-component velocity field measurement in confined liquid flows with high speed digital image plane holography. Exp Fluids 49:471–483CrossRefGoogle Scholar
  19. Palero V, Lobera J, Brunet P, Andrés N, Arroyo MP (2013) 3D characterization of the inner flow in an oscillating drop. Exp Fluids 54:1568. CrossRefGoogle Scholar
  20. Palero V, Andrés N, Arroyo M P, Sancho I, Vernet A, Pallares J (2016) Numerical and experimental study of mixing in a small-scale model reactor. In: 18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, PortugalGoogle Scholar
  21. Pan G, Meng H (2003) Digital holography for particle fields: reconstruction by use of complex amplitude. Appl Opt 42:827–833CrossRefGoogle Scholar
  22. Raffel M, Willert C, Wereley S, Kompenhans J (1998–2007) Particle Image Velocimetry, a practical guide. Springer, New YorkGoogle Scholar
  23. Sancho I, Varela S, Vernet A, Pallares J (2016) Characterization of the reacting laminar flow in a cylindrical cavity with a rotating endwall using numerical simulations and a combined PIV/PLIF technique. Int J Heat Mass Transf 93:155–166CrossRefGoogle Scholar
  24. Schnars U, Jüptner WPO (2005) Digital holography. Springer, BerlinGoogle Scholar
  25. Shankar PN, Deshpande MD (2000) Fluid mechanics in the driven cavity. Annu Rev Fluid Mech 32(1):93–136MathSciNetCrossRefGoogle Scholar
  26. Sheng J, Malkiel E, Katz J (2003) Single beam two-views holographic particle image velocimetry. Appl Opt 42:235–250CrossRefGoogle Scholar
  27. Sørensen JN, Naumov I, Mikkelsen R (2006) Experimental investigation of three-dimensional flow instabilities in a rotating lid-driven cavity. Exp Fluids 41(3):425–440CrossRefGoogle Scholar
  28. Sotiropoulos F, Ventikos Y (2001) The three-dimensional structure of confined swirling flows with vortex breakdown. J Fluid Mech 426:155–175CrossRefGoogle Scholar
  29. Spohn A, Mory M, Hopfinger EJ (1998) Experiments on vortex breakdown in a confined flow generated by a rotating disc. J Fluid Mech 370:73–99CrossRefGoogle Scholar
  30. Talapatra S, Sullivan J, Katz J, Twardowski M, Czerski H, Donaghay P, Hong J, Jan R, McFarland M, Nayak A, Zhang C (2012) Application of in situ digital holography in the study of particles, organisms and bubbles within their natural environment. In: Ocean Sensing and Monitoring IV, vol 8372. International Society for Optics and PhotonicsGoogle Scholar
  31. Toloui M, Hong J (2015) High fidelity digital inline holographic method for 3D flow measurements. Opt Express 23(21):27159–27173CrossRefGoogle Scholar
  32. Toloui M, Mallery K, Hong J (2017) Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements. Measure Sci Technol. CrossRefGoogle Scholar
  33. Vest CM (1979) Holographic interferometry, Wiley series in pure and applied optics. Wiley, New YorkGoogle Scholar
  34. Wormald SA, Coupland J (2009) Particle image identification and correlation analysis in microscopic holographic particle image velocimetry. Appl Opt 48:6400–6407CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ana M. López
    • 1
  • Julia Lobera
    • 1
  • Nieves Andrés
    • 1
  • M. Pilar Arroyo
    • 1
  • Virginia Palero
    • 1
    Email author
  • Irene Sancho
    • 2
  • Antón Vernet
    • 2
  • Jordi Pallarés
    • 2
  1. 1.Instituto de Investigación en Ingeniería de Aragón (I3A)Universidad de ZaragozaSaragossaSpain
  2. 2.Departamento de Ingeniería MecánicaUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations