Advertisement

Experiments in Fluids

, 60:138 | Cite as

Analysis of impact dynamics and deposition of single and multiple PEDOT:PSS solution droplets

  • Dominikus Brian
  • Morteza EslamianEmail author
Research Article

Abstract

In line with recent efforts and developments in emerging printed electronics, using solution-processed coatings, we studied the impact dynamics and deposition of single and multiple polymeric aqueous and isopropanol (IPA)-diluted PEDOT:PSS solution droplets, across seven orders of magnitude timescale. The solution properties and release height of droplets from a needle were varied to generate Weber numbers in the range of 94–510, with two Ohnesorge numbers of 0.0108 and 0.0195, for aqueous and IPA-diluted PEDOT:PSS solution droplets, respectively. The former droplet on FTO glass substrate is partially wetting, whereas the latter is fully wetting, generating different phenomena in the prolonged wetting and drying time. The solutions showed shear-thinning behavior at high shear rates, but viscosity immediately reached a saturated limit at higher shear rates and, therefore, the fluids behaved as Newtonian fluids during impact. Among the results, the addition of IPA resulted in improved spreading of PEDOT:PSS in the wetting phase, with wetting trend following the Tanner’s law. We then assessed the prediction power of existing models to predict maximum spreading, taking into account the role of measured static and dynamic contact angles during spreading. Multiple droplets (2, 5, and 15) were impacted nearly simultaneously and formed lines and films. We examined the bridge formation, spreading length growth, and shape evolution of multiple coalescing droplets. We also correlated the formed surface area with the number of coalescing droplets and discussed the ideality of the shape of the formed film. The results of this study will help to pave the way for large-scale manufacturing of organic coatings using droplet-based methods.

Graphic abstract

Notes

Acknowledgements

We acknowledge the financial support from the Shanghai Municipal Education Commission via the Oriental Scholar fund and the funding form the National Natural Science Foundation of China (NSFC). We thank Prof. Yunlong Guo and Miao Huo of the University of Michigan-Shanghai Jiaotong University Joint Institute for assisting with the rheology equipment and measurements. D. B. acknowledges the scholarship from the Chinese government.

Author contributions

DB and ME devised the project. DB performed the experiments and analyses, prepared the figures and drafted the manuscript. ME revised the manuscript and improved the interpretation of the results. ME conceived and outlined the project direction and objectives and secured research funding.

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

Supplementary material

348_2019_2784_MOESM1_ESM.docx (5.8 mb)
Table S1 of the supplementary information (SI) provides a list of correlations for estimating spreading ratio of single droplets. Figures S1 to S8 provide more image sequences of droplet impact (DOCX 5977 kb)

References

  1. Aarts DGAL, Lekkerkerker HNW, Guo H et al (2005) Hydrodynamics of droplet coalescence. Phys Rev Lett 95:164503.  https://doi.org/10.1103/PhysRevLett.95.164503 CrossRefGoogle Scholar
  2. Andrade R, Skurtys O, Osorio F (2015) Development of a new method to predict the maximum spread factor for shear thinning drops. J Food Eng 157:70–76.  https://doi.org/10.1016/j.jfoodeng.2015.02.017 CrossRefGoogle Scholar
  3. Andrieu C, Beysens DA, Nikolayev VS, Pomeau Y (2002) Coalescence of sessile drops. J Fluid Mech 453:427–438.  https://doi.org/10.1017/S0022112001007121 MathSciNetCrossRefzbMATHGoogle Scholar
  4. Antonini C, Amirfazli A, Marengo M (2012) Drop impact and wettability: from hydrophilic to superhydrophobic surfaces. Phys Fluids 24:102104.  https://doi.org/10.1063/1.4757122 CrossRefGoogle Scholar
  5. Ashoke Raman K, Jaiman RK, Lee T-S, Low H-T (2017) Dynamics of simultaneously impinging drops on a dry surface: role of impact velocity and air inertia. J Colloid Interface Sci 486:265–276.  https://doi.org/10.1016/j.jcis.2016.09.062 CrossRefGoogle Scholar
  6. Bartolo D, Boudaoud A, Narcy G, Bonn D (2007) Dynamics of Non-Newtonian droplets. Phys Rev Lett 99:174502.  https://doi.org/10.1103/PhysRevLett.99.174502 CrossRefGoogle Scholar
  7. Benjamin F, William B, Null F (1774) XLIV. Of the stilling of waves by means of oil. Extracted from sundry letters between Benjamin Franklin, LL. D. F. R. S. William Brownrigg, M. D. F. R. S. and the Reverend Mr. Farish. Philos Trans R Soc Lond 64:445–460.  https://doi.org/10.1098/rstl.1774.0044 CrossRefGoogle Scholar
  8. Bertola V (2013) Dynamic wetting of dilute polymer solutions: the case of impacting droplets. Adv Colloid Interface Sci 193–194:1–11.  https://doi.org/10.1016/j.cis.2013.03.001 CrossRefGoogle Scholar
  9. Biance A-L, Clanet C, Quéré D (2004) First steps in the spreading of a liquid droplet. Phys Rev E Stat Nonlinear Soft Matter Phys 69:163011–163014CrossRefGoogle Scholar
  10. Brian D, Ahmadian-Yazdi M-R, Barratt C, Eslamian M (2019) Impact dynamics and deposition of perovskite droplets on PEDOT:PSS and TiO2 coated glass substrates. Exp Therm Fluid Sci 105:181–190.  https://doi.org/10.1016/j.expthermflusci.2019.03.021 CrossRefGoogle Scholar
  11. Castrejón-Pita JR, Kubiak KJ, Castrejón-Pita AA et al (2013) Mixing and internal dynamics of droplets impacting and coalescing on a solid surface. Phys Rev E Stat Nonlinear Soft Matter Phys 88:023023.  https://doi.org/10.1103/PhysRevE.88.023023 CrossRefGoogle Scholar
  12. Chandra S, Avedisian CT (1991) On the collision of a droplet with a solid surface. Proc R Soc A Math Phys Eng Sci 432:13–41.  https://doi.org/10.1098/rspa.1991.0002 CrossRefGoogle Scholar
  13. Cira NJ, Benusiglio A, Prakash M (2015) Vapour-mediated sensing and motility in two-component droplets. Nature 519:446CrossRefGoogle Scholar
  14. Clanet C, Béguin C, Richard D, Quéré D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208.  https://doi.org/10.1017/S0022112004000904 CrossRefzbMATHGoogle Scholar
  15. Cooper-White JJ, Crooks RC, Chockalingam K, Boger DV (2002) Dynamics of polymer-surfactant complexes: elongational properties and drop impact behavior. Ind Eng Chem Res 41:6443–6459.  https://doi.org/10.1021/ie020001v CrossRefGoogle Scholar
  16. Cossali GE, Coghe A, Marengo M (1997) The impact of a single drop on a wetted solid surface. Exp Fluids 22:463–472.  https://doi.org/10.1007/s003480050073 CrossRefGoogle Scholar
  17. De Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863.  https://doi.org/10.1103/RevModPhys.57.827 MathSciNetCrossRefGoogle Scholar
  18. Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414.  https://doi.org/10.1146/annurev-matsci-070909-104502 CrossRefGoogle Scholar
  19. Duchemin L, Eggers J, Josserand C (2003) Inviscid coalescence of drops. J Fluid Mech 487:167–178.  https://doi.org/10.1017/S0022112003004646 CrossRefzbMATHGoogle Scholar
  20. Duineveld PC (2003) The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J Fluid Mech.  https://doi.org/10.1017/s0022112002003117 CrossRefzbMATHGoogle Scholar
  21. Eddi A, Winkels KG, Snoeijer JH (2013) Influence of droplet geometry on the coalescence of low viscosity drops. Phys Rev Lett.  https://doi.org/10.1103/physrevlett.111.144502 CrossRefGoogle Scholar
  22. Eggers J, Lister JR, Stone HA (1999) Coalescence of liquid drops. J Fluid Mech 401:293–310.  https://doi.org/10.1017/S002211209900662X MathSciNetCrossRefzbMATHGoogle Scholar
  23. Eggers J, Fontelos MA, Josserand C, Zaleski S (2010) Drop dynamics after impact on a solid wall: theory and simulations. Phys Fluids 22:062101.  https://doi.org/10.1063/1.3432498 CrossRefzbMATHGoogle Scholar
  24. Elschner A, Kirchmeyer S, Lövenich W et al (2010) PEDOT: Principles and applications of an intrinsically conductive polymer. CRC Press, Boca Raton.  https://doi.org/10.1201/b10318 CrossRefGoogle Scholar
  25. Eom SH, Senthilarasu S, Uthirakumar P et al (2009) Polymer solar cells based on inkjet-printed PEDOT:PSS layer. Org Electron Phys Mater Appl 10:536–542.  https://doi.org/10.1016/j.orgel.2009.01.015 CrossRefGoogle Scholar
  26. Eslamian M (2013) A mathematical model for the design and fabrication of polymer solar cells by spray coating. Dry Technol 31:405–413.  https://doi.org/10.1080/07373937.2012.737397 CrossRefGoogle Scholar
  27. Eslamian M (2014) Spray-on thin film PV solar cells: advances, potentials and challenges. Coatings 4:60–84.  https://doi.org/10.3390/coatings4010060 CrossRefGoogle Scholar
  28. Eslamian M (2017) Inorganic and organic solution-processed thin film devices. Nano Micro Lett 9:3.  https://doi.org/10.1007/s40820-016-0106-4 CrossRefGoogle Scholar
  29. Eslamian M, Soltani-Kordshuli F (2018) Development of multiple-droplet drop-casting method for the fabrication of coatings and thin solid films. J Coat Technol Res 15:271–280.  https://doi.org/10.1007/s11998-017-9975-9 CrossRefGoogle Scholar
  30. Finotello G, De S, Vrouwenvelder JCR et al (2018) Experimental investigation of non-Newtonian droplet collisions: the role of extensional viscosity. Exp Fluids 59:113.  https://doi.org/10.1007/s00348-018-2568-2 CrossRefGoogle Scholar
  31. Fukai J, Shiiba Y, Yamamoto T et al (1995) Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling. Phys Fluids 7:236–247.  https://doi.org/10.1063/1.868622 CrossRefGoogle Scholar
  32. German G, Bertola V (2009) Impact of shear-thinning and yield-stress drops on solid substrates. J Phys Condens Matter 21:37.  https://doi.org/10.1088/0953-8984/21/37/375111 CrossRefGoogle Scholar
  33. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42.  https://doi.org/10.1016/j.biomaterials.2016.06.012 CrossRefGoogle Scholar
  34. Hernández-Sánchez JF, Lubbers LA, Eddi A, Snoeijer JH (2012) Symmetric and asymmetric coalescence of drops on a substrate. Phys Rev Lett 109:184502.  https://doi.org/10.1103/PhysRevLett.109.184502 CrossRefGoogle Scholar
  35. Hoath SD, Jung S, Hsiao W-K, Hutchings IM (2012) How PEDOT:PSS solutions produce satellite-free inkjets. Org Electron Phys Mater Appl 13:3259–3262.  https://doi.org/10.1016/j.orgel.2012.10.004 CrossRefGoogle Scholar
  36. Hoth CN, Choulis SA, Schilinsky P, Brabec CJ (2007) High photovoltaic performance of inkjet printed polymer: fullerene blends. Adv Mater 19:3973–3978.  https://doi.org/10.1002/adma.200700911 CrossRefGoogle Scholar
  37. Josserand C, Thoroddsen ST (2016) Drop impact on a solid surface. Annu Rev Fluid Mech 48:365–391MathSciNetCrossRefGoogle Scholar
  38. Laan N, De Bruin KG, Bartolo D et al (2014) Maximum diameter of impacting liquid droplets. Phys Rev Appl 2:044018.  https://doi.org/10.1103/PhysRevApplied.2.044018 CrossRefGoogle Scholar
  39. Lee MW, Kang DK, Yoon SS, Yarin AL (2012) Coalescence of two drops on partially wettable substrates. Langmuir 28:3791–3798.  https://doi.org/10.1021/la204867c CrossRefGoogle Scholar
  40. Lee MW, Kim NY, Chandra S, Yoon SS (2013) Coalescence of sessile droplets of varying viscosities for line printing. Int J Multiph Flow 56:138–148.  https://doi.org/10.1016/j.ijmultiphaseflow.2013.06.004 CrossRefGoogle Scholar
  41. Li R, Ashgriz N, Chandra S et al (2010) Coalescence of two droplets impacting a solid surface. Exp Fluids 48:1025–1035.  https://doi.org/10.1007/s00348-009-0789-0 CrossRefGoogle Scholar
  42. Liu Y, Tan P, Xu L (2015) Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces. Proc Natl Acad Sci 112:3280–3284.  https://doi.org/10.1073/pnas.1417718112 CrossRefGoogle Scholar
  43. Mahajan A, Frisbie CD, Francis LF (2013) Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines. ACS Appl Mater Interfaces 5:4856–4864.  https://doi.org/10.1021/am400606y CrossRefGoogle Scholar
  44. Mao T, Kuhn DCS, Tran H (1997) Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE J 43:2169–2179.  https://doi.org/10.1002/aic.690430903 CrossRefGoogle Scholar
  45. Marmanis H, Thoroddsen ST (1996) Scaling of the fingering pattern of an impacting drop. Phys Fluids 8:1344–1346.  https://doi.org/10.1063/1.868941 CrossRefGoogle Scholar
  46. McCoul D, Rosset S, Schlatter S, Shea H (2017) Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators. Smart Mater Struct 26:125022.  https://doi.org/10.1088/1361-665x/aa9695 CrossRefGoogle Scholar
  47. Menchaca-Rocha A, Martínez-Dávalos A, Núñez R (2001) Coalescence of liquid drops by surface tension. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 63:046309.  https://doi.org/10.1103/PhysRevE.63.046309 CrossRefGoogle Scholar
  48. Narhe R, Beysens D, Nikolayev VS (2004) Contact line dynamics in drop coalescence and spreading. Langmuir 20:1213–1221.  https://doi.org/10.1021/la034991g CrossRefGoogle Scholar
  49. Ouyang J, Chu C-W, Chen F-C et al (2005) High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv Funct Mater 15:203–208.  https://doi.org/10.1002/adfm.200400016 CrossRefGoogle Scholar
  50. Pasandideh-Fard M, Qiao YM, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8:650–659.  https://doi.org/10.1063/1.868850 CrossRefGoogle Scholar
  51. Paulsen JD, Burton JC, Nagel SR (2011) Viscous to inertial crossover in liquid drop coalescence. Phys Rev Lett 106:114501.  https://doi.org/10.1103/PhysRevLett.106.114501 CrossRefGoogle Scholar
  52. Rein M, Delplanque J-P (2008) The role of air entrainment on the outcome of drop impact on a solid surface. Acta Mech 201:105.  https://doi.org/10.1007/s00707-008-0076-9 CrossRefzbMATHGoogle Scholar
  53. Rioboo R, Tropea C, Marengo M (2001) Outcomes from a drop impact on solid surfaces. At Sprays 11:155–165Google Scholar
  54. Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33:112–124.  https://doi.org/10.1007/s00348-002-0431-x CrossRefGoogle Scholar
  55. Ristenpart WD, McCalla PM, Roy RV, Stone HA (2006) Coalescence of spreading droplets on a wettable substrate. Phys Rev Lett 97:064501.  https://doi.org/10.1103/PhysRevLett.97.064501 CrossRefGoogle Scholar
  56. Rivadeneyra A, Bobinger M, Albrecht A et al (2019) Cost-effective PEDOT:PSS temperature sensors Inkjetted on a bendable substrate by a consumer printer. Polymers 11:5CrossRefGoogle Scholar
  57. Roisman IV (2009) Inertia dominated drop collisions. II. An analytical solution of the Navier-Stokes equations for a spreading viscous film. Phys Fluids 21:052104.  https://doi.org/10.1063/1.3129283 CrossRefzbMATHGoogle Scholar
  58. Roisman IV, Berberović E, Tropea C (2009) Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys Fluids 21:052103.  https://doi.org/10.1063/1.3129282 CrossRefzbMATHGoogle Scholar
  59. Sahasrabudhe SN, Rodriguez-Martinez V, O’Meara M, Farkas BE (2017) Density, viscosity, and surface tension of five vegetable oils at elevated temperatures: measurement and modeling. Int J Food Prop 20:1965–1981.  https://doi.org/10.1080/10942912.2017.1360905 CrossRefGoogle Scholar
  60. Sarojini Kg K, Dhar P, Varughese S, Das SK (2016) Coalescence dynamics of PEDOT:PSS droplets impacting at offset on substrates for Inkjet printing. Langmuir 32:5838–5851.  https://doi.org/10.1021/acs.langmuir.6b01219 CrossRefGoogle Scholar
  61. Scheller BL, Bousfield DW (1995) Newtonian drop impact with a solid surface. AIChE J 41:1357–1367.  https://doi.org/10.1002/aic.690410602 CrossRefGoogle Scholar
  62. Schiaffino S, Sonin AA (1997) Molten droplet deposition and solidification at low Weber numbers. Phys Fluids 9:3172–3187.  https://doi.org/10.1063/1.869434 CrossRefGoogle Scholar
  63. Šikalo Š, Wilhelm H-D, Roisman IV et al (2005) Dynamic contact angle of spreading droplets: experiments and simulations. Phys Fluids 17:1–13.  https://doi.org/10.1063/1.1928828 CrossRefzbMATHGoogle Scholar
  64. Soltani-Kordshuli F, Eslamian M (2017) Impact dynamics and deposition of pristine and graphene-doped PEDOT:PSS polymeric droplets on stationary and vibrating substrates. Exp Therm Fluid Sci 89:238–248.  https://doi.org/10.1016/j.expthermflusci.2017.08.019 CrossRefGoogle Scholar
  65. Tanner LH (1979) The spreading of silicone oil drops on horizontal surfaces. J Phys D Appl Phys 12:1473–1484.  https://doi.org/10.1088/0022-3727/12/9/009 CrossRefGoogle Scholar
  66. Thoroddsen ST, Sakakibara J (1998) Evolution of the fingering pattern of an impacting drop. Phys Fluids 10:1359–1374.  https://doi.org/10.1063/1.869661 CrossRefGoogle Scholar
  67. Thoroddsen ST, Takehara K, Etoh TG (2005) The coalescence speed of a pendent and a sessile drop. J Fluid Mech 527:85–114.  https://doi.org/10.1017/S0022112004003076 MathSciNetCrossRefzbMATHGoogle Scholar
  68. Thoroddsen ST, Qian B, Etoh TG, Takehara K (2007) The initial coalescence of miscible drops. Phys Fluids 19:072110.  https://doi.org/10.1063/1.2746382 CrossRefzbMATHGoogle Scholar
  69. Torrisi F, Hasan T, Wu W et al (2012) Inkjet-printed graphene electronics. ACS Nano 6:2992–3006.  https://doi.org/10.1021/nn2044609 CrossRefGoogle Scholar
  70. Ukiwe C, Kwok DY (2005) On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 21:666–673.  https://doi.org/10.1021/la0481288 CrossRefGoogle Scholar
  71. Villa F, Marengo M, De Coninck J (2018) A new model to predict the influence of surface temperature on contact angle. Sci Rep 8:6549.  https://doi.org/10.1038/s41598-018-24828-8 CrossRefGoogle Scholar
  72. Wang T, Derby B (2005) Ink-Jet printing and sintering of PZT. J Am Ceram Soc 88:2053–2058.  https://doi.org/10.1111/j.1551-2916.2005.00406.x CrossRefGoogle Scholar
  73. Wijshoff H (2018) Drop dynamics in the inkjet printing process. Curr Opin Colloid Interface Sci 36:20–27.  https://doi.org/10.1016/j.cocis.2017.11.004 CrossRefGoogle Scholar
  74. Wu M, Cubaud T, Ho C-M (2004) Scaling law in liquid drop coalescence driven by surface tension. Phys Fluids 16:L51–L54.  https://doi.org/10.1063/1.1756928 CrossRefzbMATHGoogle Scholar
  75. Xu L (2010) Instability development of a viscous liquid drop impacting a smooth substrate. Phys Rev E 82:25303.  https://doi.org/10.1103/PhysRevE.82.025303 CrossRefGoogle Scholar
  76. Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192MathSciNetCrossRefGoogle Scholar
  77. Yarin AL, Weiss DA (1995) Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J Fluid Mech 283:141–173.  https://doi.org/10.1017/S0022112095002266 CrossRefGoogle Scholar
  78. Yarin AL, Lee MW, An S, Yoon SS (2019) Chapter 3 of “Self-Healing Nanotextured Vascular Engineering Materials”. Springer Nature, Basel, pp 37–55.  https://doi.org/10.1007/978-3-030-05267-6 CrossRefGoogle Scholar
  79. Yokoi K, Vadillo D, Hinch J, Hutchings I (2009) Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface. Phys Fluids 21:072102.  https://doi.org/10.1063/1.3158468 CrossRefzbMATHGoogle Scholar
  80. Zabihi F, Xie Y, Gao S, Eslamian M (2015) Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating. Appl Surf Sci 338:163–177.  https://doi.org/10.1016/j.apsusc.2015.02.128 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Michigan-Shanghai Jiao Tong University Joint InstituteShanghaiChina

Personalised recommendations