Advertisement

Experiments in Fluids

, 60:124 | Cite as

Adaptive control of the dynamics of a fully turbulent bimodal wake using real-time PIV

  • Eliott VaronEmail author
  • Jean-Luc Aider
  • Yoann Eulalie
  • Stephie Edwige
  • Philippe Gilotte
Research Article
  • 77 Downloads

Abstract

In this study, we focus on the control of the dynamics of the three-dimensional turbulent wake downstream a square-back Ahmed body (\({\textit{Re}}_\mathrm{H}=3.9\times 10^5\)) with a perturbed underbody using a home made real-time particle image velocimetry (PIV) system. After presenting this system, the peculiar dynamics of such a wake are first characterized through the trajectories of the pressure center over the rear part of the model as well as the recirculation barycenter in the wake. These dynamics allow in particular the detection of the two so-called reflectional symmetry-breaking (RSB) modes and a preferred transient symmetric configuration. It was shown recently that the time-fluctuations of the pressure center could be characterized as a stochastic strange attractor (Varon et al. in Phys Rev Fluids 2:034604, 2017). Using tangential continuous or pulsed blowing in three different regions along the upper edge of the model rear part in an open-loop control, the dynamics of the bimodal wake can then be forced into one of the stable asymmetric modes or into the unstable symmetric state. Finally, a simple closed-loop adaptive control based on real-time identification of the wake barycenter in the PIV fields is used to force the dynamics of the wake into a regular oscillatory motion at a well-controlled frequency. Depending on the actuation parameters, the wake dynamics can also be switched from bimodal to a new multi-modal behavior. We show that this new mode also exhibits a peculiar dynamics with up-down oscillations. The recirculation area (size of the recirculation bubble) is much more reduced for the closed-loop experiments when the jets are pulsed rather than continuous, especially when the natural shedding frequency is chosen as the jet frequency.

Graphic abstract

Notes

Acknowledgements

The measurements were performed in the Malavard wind tunnel (PRISME Institute, Orléans, France) thanks to the involvement of the PRISME Institute team, especially P. Joseph and S. Loyer.

Supplementary material

348_2019_2766_MOESM1_ESM.mp4 (2.5 mb)
Supplementary material 1 (MP4 2512 kb)
348_2019_2766_MOESM2_ESM.avi (7.4 mb)
Supplementary material 2 (AVI 7577 kb)
348_2019_2766_MOESM3_ESM.mp4 (1.3 mb)
Supplementary material 3 (MP4 1360 kb)
348_2019_2766_MOESM4_ESM.mp4 (483 kb)
Supplementary material 4 (MP4 483 kb)

References

  1. Ahmed SR, Ramm G, Faltin G (1984) Some salient features of the time-averaged ground vehicle wake. Technical report, SAE technical paper 840300.  https://doi.org/10.4271/840300
  2. Bailey SCC, Martinuzzi RJ, Kopp GA (2002) The effects of wall proximity on vortex shedding from a square cylinder: three-dimensional effects. Phys Fluids 14(12):4160–4177.  https://doi.org/10.1063/1.1514972 CrossRefzbMATHGoogle Scholar
  3. Barros D, Borée J, Noack BR, Spohn A (2016a) Resonances in the forced turbulent wake past a 3D blunt body. Phys Fluids 28(6):065104.  https://doi.org/10.1063/1.4953176 CrossRefGoogle Scholar
  4. Barros D, Borée J, Noack BR, Spohn A, Ruiz T (2016) Bluff body drag manipulation using pulsed jets and coanda effect. J Fluid Mech 805:422–459.  https://doi.org/10.1017/jfm.2016.508 MathSciNetCrossRefGoogle Scholar
  5. Barros D, Borée J, Cadot O, Spohn A, Noack BR (2017) Forcing symmetry exchanges and flow reversals in turbulent wakes. J Fluid Mech.  https://doi.org/10.1017/jfm.2017.590 CrossRefGoogle Scholar
  6. Beaudoin JF, Cadot O, Aider JL, Gosse K, Paranthoën P, Hamelin B, Tissier M, Allano D, Mutabazi I, Gonzales M et al (2004) Cavitation as a complementary tool for automotive aerodynamics. Exp Fluids 37(5):763–768.  https://doi.org/10.1007/s00348-004-0879-y CrossRefGoogle Scholar
  7. Brackston RD, García de la Cruz JM, Wynn A, Rigas G, Morrison JF (2016) Stochastic modeling and feedback control of bistability in a turbulent bluff body wake. J Fluid Mech 802:726–749.  https://doi.org/10.1017/jfm.2016.495 MathSciNetCrossRefGoogle Scholar
  8. Broze G, Hussain F (1994) Nonlinear dynamics of forced transitional jets: temporal attractors and transitions to chaos. In: Lin SP, Phillips WRC, Valentine DT (eds) Nonlinear instability of nonparallel flows: IUTAM symposium Potsdam, NY, USA July 26–31, 1993. Springer, Berlin, pp 459–473.  https://doi.org/10.1007/978-3-642-85084-4_38 CrossRefGoogle Scholar
  9. Brunn A, Nitsche W (2006) Active control of turbulent separated flows over slanted surfaces. Int J Heat Fluid Flow 27(5):748–755.  https://doi.org/10.1016/j.ijheatfluidflow.2006.03.006 (special issue of the 6th international symposium on engineering turbulence modelling and measurements ETMM6)CrossRefGoogle Scholar
  10. Cadot O, Evrard A, Pastur L (2015) Imperfect supercritical bifurcation in a three-dimensional turbulent wake. Phys Rev E 91(6):063005.  https://doi.org/10.1103/PhysRevE.91.063005 CrossRefGoogle Scholar
  11. Castro IP, Robins AG (1977) The flow around a surface-mounted cube in uniform and turbulent streams. J Fluid Mech 79(2):307–335.  https://doi.org/10.1017/S0022112077000172 CrossRefGoogle Scholar
  12. Champagnat F, Plyer A, Le Besnerais G, Leclaire B, Davoust S, Le Saint Y (2011) Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp Fluids 50:1169–1182.  https://doi.org/10.1007/s00348-011-1054-x CrossRefGoogle Scholar
  13. Chun KB, Sung HJ (1996) Control of turbulent separated flow over a backward-facing step by local forcing. Exp Fluids 21(6):417–426.  https://doi.org/10.1007/BF00189044 CrossRefGoogle Scholar
  14. Corpetti T, Mémin E, Perez P (2002) Dense estimation of fluid flows. IEEE Trans Pattern Anal 24(3):365–380.  https://doi.org/10.1109/34.990137 CrossRefzbMATHGoogle Scholar
  15. Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids 40(1):80–97.  https://doi.org/10.1007/s00348-005-0048-y CrossRefGoogle Scholar
  16. Davoust S, Jacquin L, Leclaire B (2012) Dynamics of \(\text{ m }=0\) and \(\text{ m }=1\) modes and of streamwise votrices in a turbulent axisymmetric mixing layer. J Fluid Mech 709:408–444.  https://doi.org/10.1017/jfm.2012.342 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Douay CL, Faure TM, Lusseyran F (2013) Stereoscopic PIV using optical flow: application to a cavity recirculation. Exp Fluids 54(8):1579.  https://doi.org/10.1007/s00348-013-1579-2 CrossRefGoogle Scholar
  18. Duell EG, George AR (1999) Experimental study of a ground vehicle body unsteady near wake. In: SAE technical paper, SAE international.  https://doi.org/10.4271/1999-01-0812
  19. Eulalie Y (2014) Aerodynamic analysis and drag reduction around an Ahmed bluff body. Ph.D. thesis, Université de Bordeaux, Bordeaux, FranceGoogle Scholar
  20. Evrard A, Cadot O, Herbert V, Ricot D, Vigneron R, Délery J (2016) Fluid force and symmetry breaking modes of a 3D bluff body with a base cavity. J Fluid Mech 61:99–114.  https://doi.org/10.1016/j.jfluidstructs.2015.12.001 CrossRefGoogle Scholar
  21. Evstafyeva O, Morgans AS, Dalla Longa L (2017) Simulation and feedback control of the Ahmed body flow exhibiting symmetry breaking behaviour. J Fluid Mech.  https://doi.org/10.1017/jfm.2017.118 MathSciNetCrossRefzbMATHGoogle Scholar
  22. Faranda D, Sato Y, Saint-Michel B, Wiertel C, Padilla V, Dubrulle B, Daviaud F (2017) Stochastic chaos in a turbulent swirling flow. Phys Rev Lett 119(1):014502.  https://doi.org/10.1103/PhysRevLett.119.014502 CrossRefGoogle Scholar
  23. Faure TM, Douay CL, Mochki S, Lusseyrand F, Quenot G (2010) Stereoscopic PIV using optical flow: investigation of a recirculating cavity flow. In: 8th international ERCOFTAC symposium on engineering turbulence modeling and measurements, Marseille: France, vol 3, pp 905–910Google Scholar
  24. Gautier N, Aider JL (2014) Feed-forward control of a perturbed backward-facing step flow. J Fluid Mech 759:181–196.  https://doi.org/10.1017/jfm.2014.518 CrossRefGoogle Scholar
  25. Gautier N, Aider JL (2015) Frequency-lock reactive control of a separated flow enabled by visual sensors. Exp Fluids 56(1):1–10.  https://doi.org/10.1007/s00348-014-1869-3 CrossRefGoogle Scholar
  26. Gautier N, Aider JL (2015) Real-time planar flow velocity measurements using an optical flow algorithm implemented on GPU. J Vis 18:277–286.  https://doi.org/10.1007/s12650-014-0222-5 CrossRefGoogle Scholar
  27. Gautier N, Aider JL, Duriez T, Noack BR, Segond M, Abel M (2015) Closed-loop separation control using machine learning. J Fluid Mech 770:442–457.  https://doi.org/10.1017/jfm.2015.95 CrossRefGoogle Scholar
  28. Gentile V, Schrijer FFJ, Van Oudheusden BW, Scarano F (2016) Low-frequency behavior of the turbulent axisymmetric near-wake. Phys Fluids 28(6):065102.  https://doi.org/10.1063/1.4953150 CrossRefGoogle Scholar
  29. Grandemange M, Cadot O, Gohlke M (2012) Reflectional symmetry breaking of the separated flow over three-dimensional bluff bodies. Phys Rev E 86(3):035302.  https://doi.org/10.1103/PhysRevE.86.035302 CrossRefGoogle Scholar
  30. Grandemange M, Gohlke M, Cadot O (2013) Bi-stability in the turbulent wake past parallelepiped bodies with various aspect ratios and wall effects. Phys Fluids 25(9):095103.  https://doi.org/10.1063/1.4820372 CrossRefzbMATHGoogle Scholar
  31. Grandemange M, Gohlke M, Cadot O (2013) Turbulent wake past a three-dimensional blunt body, part 1: global modes and bi-stability. J Fluid Mech 722:51–84.  https://doi.org/10.1017/jfm.2013.83 CrossRefzbMATHGoogle Scholar
  32. Grandemange M, Gohlke M, Cadot O (2014a) Statistical axisymmetry of the turbulent sphere wake. Exp Fluids 55(11):1838.  https://doi.org/10.1007/s00348-014-1838-x CrossRefGoogle Scholar
  33. Grandemange M, Gohlke M, Cadot O (2014) Turbulent wake past a three-dimensional blunt body, part 2: experimental sensitivity analysis. J Fluid Mech 752:439–461.  https://doi.org/10.1017/jfm.2014.345 CrossRefzbMATHGoogle Scholar
  34. Grebogi C, Ott E, Yorke JA (1988) Unstable periodic orbits and the dimensions of multifractal chaotic attractors. Phys Rev A 37:1711–1724.  https://doi.org/10.1103/PhysRevA.37.1711 MathSciNetCrossRefGoogle Scholar
  35. Gumowski K, Miedzik J, Goujon-Durand S, Jenffer P, Wesfreid J (2008) Transition to a time-dependent state of fluid flow in the wake of a sphere. Phys Rev E 77(5):055308.  https://doi.org/10.1103/PhysRevE.77.055308 CrossRefGoogle Scholar
  36. Hauet A, Kruger A, Krajewski WF, Bradley A, Muste M, Creutin JD, Wilson M (2008) Experimental system for real-time discharge estimation using an image-based method. J Hydrol Eng 13(2):105–110.  https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(105) CrossRefGoogle Scholar
  37. Hinterberger C, García-Villalba M, Rodi W (2004) Large eddy simulation of flow around the Ahmed body. In: McCallen R, Browand F, Ross J (eds) The aerodynamics of heavy vehicles: trucks, buses, and trains. Springer, Berlin, pp 77–87.  https://doi.org/10.1007/978-3-540-44419-0_7 CrossRefGoogle Scholar
  38. Hucho WH (Ed) (1987) Aerodynamics of road vehicles: from fluid mechanics to vehicle engineering. Elsevier, Amsterdam.  https://doi.org/10.1016/C2013-0-01227-3 CrossRefGoogle Scholar
  39. Iriarte Munoz JM, Dellavale D, Sonnaillon MO, Bonetto FJ (2009) Real-time particle image velocimetry based on FPGA technology. In: 2009 5th southern conference on programmable logic (SPL), pp 147–152.  https://doi.org/10.1109/SPL.2009.4914899
  40. Jermann C (2015) Vortex breakdown in the turbulent wake of a generic car. Ph.D. thesis, Université d’Aix-Marseille, France, 2015AIXM4340Google Scholar
  41. Joseph P, Amandolèse X, Aider JL (2012) Drag reduction on the \(25^\circ\) slant angle ahmed reference body using pulsed jets. Exp Fluids 52(5):1169–1185.  https://doi.org/10.1007/s00348-011-1245-5 CrossRefGoogle Scholar
  42. Kaiser E, Noack BR, Cordier L, Spohn A, Segond M, Abel M, Daviller G, Ästh J, Krajnovic̀ S, Niven RK et al (2014) Cluster-based reduced-order modelling of a mixing layer. J Fluid Mech 754:365–414.  https://doi.org/10.1017/jfm.2014.355 CrossRefzbMATHGoogle Scholar
  43. Klotz L, Goujon-Durand S, Rokicki J, Wesfreid J (2014) Experimental investigation of flow behind a cube for moderate reynolds numbers. J Fluid Mech 750:73–98.  https://doi.org/10.1017/jfm.2014.236 CrossRefGoogle Scholar
  44. Krajnović S, Davidson L (2003) Numerical study of the flow around a bus-shaped body. J Fluid Eng 125(3):500–509.  https://doi.org/10.1115/1.1567305 CrossRefGoogle Scholar
  45. Krajnović S, Davidson L (2005) Flow around a simplified car, part 1: large eddy simulation. J Fluids Eng 127(5):907–918.  https://doi.org/10.1115/1.1989371 CrossRefGoogle Scholar
  46. Lahaye A, Leroy A, Kourta A (2014) Aerodynamic characterisation of a square-back bluff body flow. Int J of Aerodyn 4(1–2):43–60.  https://doi.org/10.1504/IJAD.2014.057804 CrossRefGoogle Scholar
  47. Le Besnerais G, Champagnat F (2005) Dense optical flow by iterative local window registration. In: Image processing. ICIP. IEEE international conference, IEEE, vol 1, pp 137–140.  https://doi.org/10.1109/ICIP.2005.1529706
  48. Li R, Barros D, Borée J, Cadot O, Noack BR, Cordier L (2016) Feedback control of bimodal wake dynamics. Exp Fluids 57(10):158.  https://doi.org/10.1007/s00348-016-2245-2 CrossRefGoogle Scholar
  49. Lienhart H, Stoots C, Becker S (2002) Flow and turbulence structures in the wake of a simplified car model (Ahmed modell). In: Wagner S, Rist U, Heinemann HJ, Hilbig R (eds) New results in numerical and experimental fluid mechanics III: contributions to the 12th STAB/DGLR symposium Stuttgart, Germany 2000. Springer, Berlin, pp 323–330.  https://doi.org/10.1007/978-3-540-45466-3_39 CrossRefGoogle Scholar
  50. Morel T (1978) The effect of base slant on the flow pattern and drag of three-dimensional bodies with blunt ends. In: Sovran G, Morel T, Mason WT (eds) Aerodynamic drag mechanisms of bluff bodies and road vehicles. Springer, Boston, pp 191–226.  https://doi.org/10.1007/978-1-4684-8434-2_8 CrossRefGoogle Scholar
  51. Muddada S, Patnaik BSV (2011) Application of chaos control techniques to fluid turbulence. Springer, Berlin, pp 87–136.  https://doi.org/10.1007/978-3-642-21922-1_4 CrossRefGoogle Scholar
  52. Narayanan S, Gunaratne GH, Hussain F (2013) A dynamical systems approach to the control of chaotic dynamics in a spatiotemporal jet flow. Chaos 23(3):033133.  https://doi.org/10.1063/1.4820819 CrossRefGoogle Scholar
  53. NVIDIA (2010) Whitepaper. NVIDIA’s next generation CUDA compute architecture: FermiGoogle Scholar
  54. van Ommen J, Schouten JC, vander Stappen ML, van den Bleek CM (1999) Response characteristics of probe-transducer systems for pressure measurements in gas–solid fluidized beds: how to prevent pitfalls in dynamic pressure measurements. Powder Technol 106(3):199–218.  https://doi.org/10.1016/S0032-5910(99)00078-9 CrossRefGoogle Scholar
  55. Östh J, Noack BR, Krajnović S, Barros D, Borée J (2014) On the need for a nonlinear subscale turbulence term in pod models as exemplified for a high-reynolds-number flow over an Ahmed body. J Fluid Mech 747:518–544.  https://doi.org/10.1017/jfm.2014.168 MathSciNetCrossRefzbMATHGoogle Scholar
  56. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64(11):1196–1199.  https://doi.org/10.1103/PhysRevLett.64.1196 MathSciNetCrossRefzbMATHGoogle Scholar
  57. Pan C, Xue D, Xu Y, Wang J, Wei R (2015) Evaluating the accuracy performance of Lucas–Kanade algorithm in the circumstance of PIV application. Sci China Phys Mech 58:104704.  https://doi.org/10.1007/s11433-015-5719-y CrossRefGoogle Scholar
  58. Parezanović V, Cadot O (2012) Experimental sensitivity analysis of the global properties of a two-dimensional turbulent wake. J Fluid Mech 693:115–149.  https://doi.org/10.1017/jfm.2011.495 CrossRefzbMATHGoogle Scholar
  59. Pastoor M, Henning L, Noack BR, King R, Tadmor G (2008) Feedback shear layer control for bluff body drag reduction. J Fluid Mech 608:161–196.  https://doi.org/10.1017/S0022112008002073 CrossRefzbMATHGoogle Scholar
  60. Patnaik BSV, Narayana PAA, Seetharamu KN (1999) Numerical simulation of laminar flow past a transversely vibrating circular cylinder. J Sound Vib 228(3):459–475.  https://doi.org/10.1006/jsvi.1998.2418 CrossRefGoogle Scholar
  61. Pavia G, Passmore M, Sardu C (2017) Evolution of the bi-stable wake of a square-back automotive shape. Exp Fluids.  https://doi.org/10.1007/s00348-017-2473-0 CrossRefGoogle Scholar
  62. Plyer A, Le Besnerais G, Champagnat F (2016) Massively parallel Lucas Kanade optical flow for real-time video processing applications. J Real Time Image Process 11(4):713–730.  https://doi.org/10.1007/s11554-014-0423-0 CrossRefGoogle Scholar
  63. Quénot GM, Pakleza J, Kowalewski TA (1998) Particle image velocimetry with optical flow. Exp Fluids 25(3):177–189.  https://doi.org/10.1007/s003480050222 CrossRefGoogle Scholar
  64. Rao A, Minelli G, Basara B, Krajnović S (2018) Investigation of the near-wake flow topology of a simplified heavy vehicle using PANS simulations. J Wind Eng Ind Aerodyn 183:243–272.  https://doi.org/10.1016/j.jweia.2018.09.019 CrossRefGoogle Scholar
  65. Roberts JW (2012) Control of underactuated fluid-body systems with real-time particle image velocimetry. Ph.D. thesis, MIT, Boston, USAGoogle Scholar
  66. Sartor F, Losfeld G, Bur R (2012) PIV study on a shock-induced transition in transonic flow. Exp Fluids 53:815–827.  https://doi.org/10.1007/s00348-012-1330-4 CrossRefGoogle Scholar
  67. Siegel S, Cohen K, McLaughlin T, Myatt J (2003) Real-time particle image velocimetry for closed-loop flow control studies. In: 41st aerospace sciences meeting and exhibit, aerospace sciences meetings, Reno, USA.  https://doi.org/10.2514/6.2003-920
  68. Sigurdson LW (1995) The structure and control of a turbulent reattaching flow. J Fluid Mech 298:139–165.  https://doi.org/10.1017/S0022112095003259 CrossRefGoogle Scholar
  69. Stanislas M, Okamoto K, Kähler CJ, Westerweel J, Scarano F (2008) Main results of the third international PIV challenge. Exp Fluids 45(1):27–71.  https://doi.org/10.1007/s00348-008-0462-z CrossRefGoogle Scholar
  70. Varon E, Eulalie Y, Edwige S, Gilotte P, Aider JL (2017) Chaotic dynamics of large-scale structures in a turbulent wake. Phys Rev Fluids 2:034604.  https://doi.org/10.1103/PhysRevFluids.2.034604 CrossRefGoogle Scholar
  71. Venning J, Lo Jacono D, Burton D, Thompson MC, Sheridan J (2017) The nature of the vortical structures in the near wake of the Ahmed body. Proc Inst Mech Eng Part D J Automob Eng.  https://doi.org/10.1177/0954407017690683 CrossRefGoogle Scholar
  72. Volpe R, Devinant P, Kourta A (2015) Experimental characterization of the unsteady natural wake of the full-scale square back Ahmed body: flow bi-stability and spectral analysis. Exp Fluids 56(5):99.  https://doi.org/10.1007/s00348-015-1972-0 CrossRefGoogle Scholar
  73. Willert C, Munson M, Gharib M (2010) Real-time particle image velocimetry for closed-loop flow control applications. In: 15th international symposium on applications of laser techniques to fluid mechanics, Lisbon, PortugalGoogle Scholar
  74. Williamson CHK (1996) Vortex dynamics in the cylinder wake. Annu Rev Fluid Mech 28(1):477–539.  https://doi.org/10.1146/annurev.fl.28.010196.002401 MathSciNetCrossRefGoogle Scholar
  75. Yang J, Liu M, Wu G, Liu Q, Zhang X (2015) Low-frequency characteristics in the wake of a circular disk. Phys Fluids 27(6):064101.  https://doi.org/10.1063/1.4922109 CrossRefGoogle Scholar
  76. Yu H, Leeser M, Tadmor G, Siegel S (2006) Real-time particle image velocimetry for feedback loops using FPGA implementation. J Aerosp Comput Inf Commun 3(2):55–62.  https://doi.org/10.2514/1.18062 CrossRefGoogle Scholar
  77. Yun G, Kim D, Choi H (2006) Vortical structures behind a sphere at subcritical Reynolds numbers. Phys Fluids 18(1):015102.  https://doi.org/10.1063/1.2166454 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), UMR7636 CNRSESPCI Paris, PSL Research University, Univ. Paris-Diderot, Sorbonne UniversitéParisFrance
  2. 2.Plastic Omnium Intelligent Exterior Systems (POIES), Parc Industriel de la Plaine de l’AinSainte-JulieFrance

Personalised recommendations