Experiments in Fluids

, 60:91 | Cite as

Detection of Lambda- and Omega-vortices with the temperature-sensitive paint method in the late stage of controlled laminar–turbulent transition

  • Jonathan LemarechalEmail author
  • Christian Klein
  • Ulrich Henne
  • Dominik K. Puckert
  • Ulrich Rist
Research Article


An experiment investigating the laminar–turbulent transition of a Blasius boundary-layer-like flow was set up in the laminar water channel at the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart. The late stage of controlled transition with K-type breakdown was investigated with the temperature-sensitive paint (TSP) method on the flat-plate surface. Additional velocity measurements in the boundary layer were performed with the hot-film anemometry for better interpretation of the TSP results. The test conditions enable the TSP method to resolve the complete transition process temporally and spatially. Therefore, it was possible to detect the coherent structures occurring in the late stage of laminar–turbulent transition from the visualizations on the flat-plate surface: namely, \(\varLambda\)- and \(\varOmega\)-vortices. The transition location is derived from the TSP visualizations with a gradient-based method and with the Turbulence Energy Recognition Algorithm (TERA) from the velocity measurements. The derived average transition location shows good agreement between the two techniques, but the TSP method detected a later beginning and earlier end of transition.

Graphical abstract



The authors would like to thank Mr. Carsten Fuchs (DLR-AS-EXV), Mr. Tobias Kleindienst (DLR-AS-EXV), Dr. Vladimir Ondrus (University of Hohenheim), Ms. Esther Mäteling (RWTH Aachen University), and Mr. Martin Weberschock (Weberschock Development) for their support during the design, manufacturing, and preparation of the TSP element. We thank Mr. Daniel Kruse (University of Stuttgart) for measuring the boundary-layer stability behavior of the laminar water channel.


  1. Adrian R (2007) Hairpin vortex organization in wall turbulence. Phys Fluids 19:041301CrossRefGoogle Scholar
  2. Ashill P, Betts C, Gaudet I (1996) A wind tunnel study of transition flows on a swept panel wing at high subsonic speeds. In: CEAS 2nd European forum on laminar flow technology, pp 10.1–10.17Google Scholar
  3. Bake S, Meyer D, Rist U (2002) Turbulence mechanism in Klebanoff transition: a quantitative comparison of experiment and direct numerical simulation. J Fluid Mech 459:217–243CrossRefGoogle Scholar
  4. Borodulin V, Kachanov Y (1989) The role of the mechanism of the local secondary instability in K-breakdown of boundary layer. Sov J Appl Phys 3(2):70–81Google Scholar
  5. Borodulin V, Gaponenko V, Kachanov Y, Meyer D, Rist U, Lian Q, Lee C (2002) Late-stage transitional boundary-layer structures. Direct numerical simulation and experiment. Theor Comput Fluid Dyn 15:317–337CrossRefGoogle Scholar
  6. Capone A, Klein C, Felice FD, Beifuß U, Miozzi M (2015) Fast-response underwater TSP investigation of subcritical instabilities of a cylinder in crossflow. Exp Fluids 56(10):1–14CrossRefGoogle Scholar
  7. Falco R, Gendrich C (1990) Near-wall turbulence. The turbulence burst detection algorithm of Z. Zaric, p 911.931Google Scholar
  8. Fey U, Egami Y (2007) Transition-detection by temperature-sensitive paint. In: Tropea C, Yarin AL, Foss JF (eds) Springer handbook of experimental fluid mechanics. Springer, Berlin, pp 537–552Google Scholar
  9. Fey U, Egami Y, Klein C (2007) Temperature-sensitive paint application in cryogenic wind tunnels: transition detection at high reynolds numbers and influence of the technique on measured aerodynamic coefficients. In: 22nd international congress on instrumentation in aerospace simulation facilities, Pacific Grove, CAGoogle Scholar
  10. Fey U, Klein C, Möller T, Pöttner J, Radespiel R, Ondrus V, Beifuß U (2013) Investigation of circular cylinder flow in water using temperature-sensitive paint. In: Dillmann A, Heller G, Kreplin HP, Nitsche W, Peltzer I (eds) New results in numerical and experimental fluid mechanics VIII. Notes on numerical fluid mechanics and multidisciplinary design, vol 121. Springer, Berlin, Heidelberg, pp 657–664Google Scholar
  11. Ghiaasiaan S (2011) Convective heat and mass transfer. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. Guo H, Borodulin V, Kachanov Y, Pan C, Wang J, Lian Q, Wang S (2010) Nature of sweep and ejection events in transitional and turbulent boundary layers. J Turbul 11(34):1–51Google Scholar
  13. Hama F, Nutant J (1963) Detailed flow-field observations in the transition process in a thick boundary layer. In: Proceedings of the 1963 heat transfer and fluid mechanics institute, Stanford University Press, StanfordGoogle Scholar
  14. Kachanov Y (1985) On resonant breakdown of laminar boundary layer. In: Proceedings of 5th National congress on theoretatical and application and mechanical, actual and topical problems of ship hydro- and aerodynamics, 3: 71-1–71-11. Varna: Bulg. Ship Hydrodyn. Cent. (In Russian)Google Scholar
  15. Kachanov Y (1994) Physical mechanisms of laminar-boundary-layer transition. Annu Rev Fluid Mech 26:411–482MathSciNetCrossRefGoogle Scholar
  16. Kachanov Y, Levchenko V (1984) The resonant interaction of disturbances at laminar-turbulent transition in a boundary layer. J Fluid Mech 138:209–247CrossRefGoogle Scholar
  17. Klebanoff PS, Tidstrom KD, Sargent LM (1962) The three-dimensional nature of boundary-layer instability. J Fluid Mech 12(1):1–34CrossRefGoogle Scholar
  18. Klein C, Engler R, Henne U, Sachs W (2005) Application of pressure-sensitive paint for determination of the pressure field and calculation of the forces and moments of models in a wind tunnel. Exp Fluids 39:475–483. CrossRefGoogle Scholar
  19. Kruse D (2016) Implementierung eines störgenerators für kontrollierte transition mit anschließender untersuchung der erzeugten störung. Bachelor’s thesis, Institut für Aerodynamik und Gasdynamik, Universität StuttgartGoogle Scholar
  20. Kruse M (1997) Einsatz der Laser–Doppler–Anemometrie zur Untersuchung des laminar-turbulenten Grenzschichtumschlags an der ebenen Platte. PhD thesis, Universität StuttgartGoogle Scholar
  21. Kruse M, Wagner S (1998) Visualization and laser Doppler measurements of the development of Lambda vortices in laminar-turbulent transition. Meas Sci Technol 9(4):659–669CrossRefGoogle Scholar
  22. Lemarechal J, Costantini M, Klein C, Kloker M, Wuerz W, Kurz H, Schaber S (2018a) Investigation of stationary-crossflow-instability induced transition with temperature-sensitive paint method. In: 5th International conference on experimental fluid mechanics ICEFM 2018 Munich, Germany, July 2–4, 2018Google Scholar
  23. Lemarechal J, Klein C, Henne U, Puckert D, Rist U (2018b) Spatially and temporally resolved visualization of turbulents spots in Blasius boundary layer transition. In: 18th International symposium on flow visualization ISFV 18, June 26–29, 2018, Zurich, Switzerland.
  24. Lemarechal J, Klein C, Henne U, Puckert D, Rist U (2018c) Transition delay by oblique roughness elements in a Blasius boundary-layer flow. In: 2018 AIAA aerospace sciences meeting, AIAA SciTech Forum, AIAA 2018-1057Google Scholar
  25. Lin HT (1994) The analogy between fluid friction and heat transfer of laminar forced convection on a flat plate. Wärme- und Stoffübertragung 29:181–184CrossRefGoogle Scholar
  26. Liu T, Sullivan JP (2005) Pressure and temperature sensitive paints. Springer, New YorkGoogle Scholar
  27. Narasimha R (1985) The laminar-turbulent transition zone in the boundary layer. Prog Aerospace Sci 22:29–80CrossRefGoogle Scholar
  28. Ondrus V, Meier RJ, Klein C, Henne U, Schäferling M, Beifuß U (2015) Europium 1,3-di(thienyl)propane-1,3-diones with outstanding properties for temperature sensing. Sens Actuators A Phys 233:434–441CrossRefGoogle Scholar
  29. Owen F (1970) Transition experiments on a flat plate at subsonic and supersonic speeds. AIAA J 8(3):518–523MathSciNetCrossRefGoogle Scholar
  30. Pastuhoff M, Yorita D, Asai K, Alfredsson P (2013) Enhancing the signal-to-moise ratio of pressure sensitive paint data by singular value decomposition. Meas Sci Technol 24(7):075301. CrossRefGoogle Scholar
  31. Petzold R, Radespiel R (2015) Transition on a wing with spanwise varying crossflow and linear stability analysis. AIAA J 53(2):321–335CrossRefGoogle Scholar
  32. Puckert DK, Rist U (2018) Experiments on critical reynolds number and global instability in roughness-induced laminar-turbulent transition. J Fluid Mech 844:878–904CrossRefGoogle Scholar
  33. Raffel M, Merz C, Schwermer T, Richter K (2015) Differential infrared thermography for boundary layer transition detection on pitching rotor blade models. Exp Fluids 56(2):1–22CrossRefGoogle Scholar
  34. Rist U (1990) Numerische Untersuchung der räumlichen, dreidimensionalen Störungsentwicklung beim Grenzschichtumschlag. PhD thesis, Inst. A f. Mech. Univ. StuttgartGoogle Scholar
  35. Rist U, Fasel H (1995) Direct numerical simulation of control transition in a flat-plate boundary layer. J Fluid Mech 298:211–248CrossRefGoogle Scholar
  36. Rudolph I (2011) Infrared thermography as a tool for wall shear stress measurements. PhD thesis, Technische Universität BerlinGoogle Scholar
  37. Sabatino DR, Smith CR (2008) Turbulent spot flow topology and mechanisms for surface heat transfer. J Fluid Mech 612:81–105CrossRefGoogle Scholar
  38. Schubauer G, Skramstad H (1948) Laminar-boundary-layer oscillations and transition on a flat plate. Technical report, NACA Report No 909Google Scholar
  39. Strunz M, Speth J (1987) A new laminar water tunnel to study the transition process in a Blasius boundary layer and in a separation bubble and a new tool for industrial aerodynamics and hydrodynamic research. AGARD CP-413 pp 25–1–25–5Google Scholar
  40. Subasi A, Puckert D, Gunes H, Rist U (2015) Calibration of constant temperature anemometry with hot-film probes for low speed laminar water channel flows. In: 13th international symposium on fluid control, measurement and visualization FLUCOME2015, 15–18 Nov Doha, QatarGoogle Scholar
  41. Wang Y, Gaster M (2005) Effect of surface steps on boundary layer transition. Exp Fluids 39:679–686CrossRefGoogle Scholar
  42. Weiss A, Gardner A, Klein C, Raffel M (2017) Boundary-layer transition measurements on mach-scalled helicopter rotor bblade in climb. CEAS Aeronaut J 8:613–623CrossRefGoogle Scholar
  43. White F (2006) Viscous fluid flow, International Edition, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  44. Wiegand T, Bestek H, Wagner S, Fasel H (1995) Experiments on a wave train emanating from a point source in a laminar boundary layer. In: 26th AIAA fluid dynamics conference, 19–22 June 1995, San Diego, CA, AIAA-95-2255Google Scholar
  45. Yorita D, Lemarechal, Klein C, Fujita K, Nagai H (2018) Dynamic visualization of boundary-layer transition in a pitch-sweep test using a carbon nanotube TSP. In: 18th international symposium on flow visualization ISFV 18, June 26–29, 2018, ZurichGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Aerodynamics and Flow TechnologyGerman Aerospace Center (DLR)GöttingenGermany
  2. 2.Institute for Aerodynamics and Gas DynamicsUniversity of StuttgartStuttgartGermany

Personalised recommendations