Experiments in Fluids

, 60:67 | Cite as

Unsteady flows measurements using a calorimetric wall shear stress micro-sensor

  • Cecile Ghouila-HouriEmail author
  • Abdelkrim Talbi
  • Romain Viard
  • Quentin Gallas
  • Eric Garnier
  • Alain Merlen
  • Philippe Pernod
Research Article


A microscale low power high temperature gradient calorimetric (HTGC) sensor measuring both mean and fluctuating bidirectional wall shear stress is presented. The micromachined sensor is composed of three free-standing \(3\,\upmu \text {m}\times 1\) mm micro-wires mechanically supported using perpendicular micro-bridges. The static and dynamic characterisations were performed in a turbulent boundary layer wind tunnel on a flat plate configuration, and compared to the one obtained with a conventional hot-film probe. The results demonstrated that the calorimetric sensor behaves similarly to the hot-film in constant temperature anemometry with nonetheless lower power consumption and better spatial resolution and temporal response. Additionally, its calorimetric measurement detected the direction of the wall shear stress component orthogonal to the wires, corresponding to the shear stress sign in 2D flows. The calibrated HTGC micro-sensor was then used for unsteady flow separation detection downstream a 2D square rib for \(Re_h= 2.56\times 10^4\). The calorimetric micro-sensor enabled self-correlated measurements and consequently successfully achieved the detection of flow separation and the reattachment point around \(x/h=10.7\).

Graphical abstract



This work is funded by the French National Research Agency (ANR) (Grant no. ANR-14-ASTR-0023-01) in the framework of the ANR ASTRID CAMELOTT project. It is supported by the regional platform CONTRAERO in the framework of the CPER ELSAT 2020 project and RENATECH, the French national nanofabrication network.


  1. Bailey S (2010) Turbulence measurements using a nanoscale thermal anemometry probe. J Fluid Mech 663:160–179CrossRefGoogle Scholar
  2. Barlian AA, Park S-J, Mukundan V, Pruitt BL (2007) Design and characterization of microfabricated piezoresistive floating element-based shear stress sensor. Sens Actuators A Phys 134:77–87CrossRefGoogle Scholar
  3. Buder U, Petz R, Kittel M, Nitsche W, Obermeier E (2008) AeroMEMS polyimide based wall double hot-wire sensors for flow separation detection. Sens Actuators A Phys 142(1):130–137CrossRefGoogle Scholar
  4. Chandrasekaran V, Cain A, Nishida T, CattafestaL N, Sheplak M (2005) Dynamic calibration technique for thermal shear stress sensors with mean flow. Exp Fluids 39:56–65CrossRefGoogle Scholar
  5. Chandrasekharan V, Sells J, Meloy J, ArnoldD P, Sheplak M (2011) A microscale differential capacitive direct wall-shear-stress sensor. J Microelectromech Syst 20(3):622–635CrossRefGoogle Scholar
  6. Furjes P, Legradi G, Cs Ducso, Aszodi A, Barsony I (2004) Thermal characterisation of a direction dependent flow sensor. Sens Actuators A Phys 115(2):417–423CrossRefGoogle Scholar
  7. Ghouila-Houri C, Claudel J, Gerbedoen J-C, Gallas Q, Garnier E, Merlen A, Viard R, Talbi A, Pernod P (2016) High temperature gradient micro-sensor for wall shear stress and flow direction measurements. Appl Phys Lett 109(24):241905CrossRefGoogle Scholar
  8. Ghouila-Houri C, Gallas Q, Garnier E, Merlen A, Viard R, Talbi A, Pernod P (2017) High temperature gradient calorimetric wall shear stress micro-sensor for flow separation detection. Sens Actuators A Phys 266:232–241CrossRefGoogle Scholar
  9. Ghouila-Houri C, Gallas Q, Garnier E, Viard R, Talbi A, Pernod P (2018) High temperature gradient wall shear stress micro-sensors for flow separation control. In: 2018 flow control conference, AIAA AVIATION Forum, (AIAA 2018-3057)Google Scholar
  10. Kuo J, Yu L, Meng E (2012) Micromachined thermal flow sensors a review 2012. Micromachines 3:500–573CrossRefGoogle Scholar
  11. Leu TS, Yu JM, Miau JJ, Chen SJ (2016) MEMS flexible thermal flow sensors for measurement of unsteady flow above a pitching wind turbine blade. Exp Therm Fluid Sci 77:167–178CrossRefGoogle Scholar
  12. Liu YZ, Ke F, Sung HJ (2008) Unsteady separated and reattaching turbulent flow over a two-dimensional square rib. J Fluids Struct 24(3):366–381CrossRefGoogle Scholar
  13. Lofdahl L, Chernoray V, Haasl S, Stemme G, Sen M (2003) Characteristics of a hot-wire microsensor for time-dependent wall shear stress measurements. Exp Fluids 35(3):240–251CrossRefGoogle Scholar
  14. Lofdahl L, Gad-el-Hak M (1999) MEMS applications in turbulence and flow control. Prog Aerosp Sci 35:101–203CrossRefGoogle Scholar
  15. Mathis R, Marusic I, CHernyshenko SI, Hutchins N (2013) Estimating wall-shear-stress fluctuations given an outer region input. J Fluid Mech 715:163–180MathSciNetCrossRefGoogle Scholar
  16. Nagib H, Chauchan KA, Monkewitz PA (2007) Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Philos Trans R Soc 365:755–770CrossRefGoogle Scholar
  17. Sheplak M, Chandrasekharan V, Cain A, Nishida T, Cattafesta LN (2002) Characterization of a silicon-micromachined thermal shear-stress sensor. AIAA J 40(6):1099–1104CrossRefGoogle Scholar
  18. Talbi A (2015) A micro-scale hot wire anemometer based on low stress (Ni/W) multi-layers deposited on nano-crystalline diamond for air flow sensing. J Micromech Microeng 25(12):125029CrossRefGoogle Scholar
  19. Vereshchagina E, Tiggelaar RM, Sanders RGP, Wolters RAM, Gardeniers JGE (2015) Low power micro-calorimetric sensors for analysis of gaseous samples. Sens Actuators B Chem 206:772–787CrossRefGoogle Scholar
  20. Viard R (2013) A robust thermal microstructure for mass flow rate measurement in steady and unsteady flows. J Micromech Microeng 23(6):065016CrossRefGoogle Scholar
  21. Xu Y, Tai Y-C, Huang A, Ho C-M (2003) IC-integrated flexible shear-stress sensor skin. J Microelectromech Syst 12(5):740–747CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 IEMN, LIA LICS/LEMACLilleFrance
  2. 2.DAAA, ONERA The French Aerospace LabLilleFrance
  3. 3.Univ. Lille, CNRS, ONERA, Arts et Métiers Paris Tech, Centrale Lille, Laboratoire de Mécanique des Fluides de Lille Kampé de FérietLilleFrance
  4. 4.Fluiditech/ThurmelecPulversheimFrance
  5. 5.DAAA, ONERA, Université Paris SaclayMeudonFrance

Personalised recommendations