Advertisement

Experiments in Fluids

, 60:14 | Cite as

Utilizing differential interferometry for spatially resolved pressure field measurements of laser-induced cavitation

  • Stephan KordelEmail author
  • Jeanette Hussong
Research Article

Abstract

In the present study, differential interferometry and shadowgraphy are combined to determine cavitation-induced pressure fields and corresponding bubble dynamics during laser-induced single-bubble cavitation. An evaluation method is presented that allows to reconstruct the pressure distribution from interference images with high accuracy. The minimum reconstruction accuracy of the pressure amplitudes with the presented method is determined from synthetic data sets for an angular range of \({8.9}^{\circ }\le \varphi \le {63.0}{^{\circ }}\) to be \({96.2}{\%}\). On the basis of statistically evaluated data, the energy budget of single cavitation bubbles \(E_\mathrm{b}\) and the corresponding pressure wave energy \(E_\mathrm{s}\) could be determined also for weak pressure wave amplitudes in the order of \({6}{\hbox { bar}}\).

Graphical abstract

Notes

Acknowledgements

This research was financially supported by DFG (HU 2264/1-1).

References

  1. Alloncle AP, Dufresne D, Autric M (1995) Characterization of pressure waves in liquids using an interferometric method. In: Brun R, Dumitrescu LZ (eds) Shock waves @ Marseille III. Springer, Berlin, pp 239–244CrossRefGoogle Scholar
  2. Brujan E-A, Vogel A (2006) Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom. J Fluid Mech 558:281CrossRefGoogle Scholar
  3. Brujan E-A, Nahen K, Schmidt P, Vogel A (2001) Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J Fluid Mech 433:283–314CrossRefGoogle Scholar
  4. Coutier-Delgosha O, Fortes-Patella R, Reboud JL, Hofmann M, Stoffel B (2003) Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitating condition. J Fluids Eng 125(6):970CrossRefGoogle Scholar
  5. Dijkink R, Ohl C-D (2008) Laser-induced cavitation based micropump. Lab Chip 8(10):1676CrossRefGoogle Scholar
  6. Han B, Khler K, Jungnickel K, Mettin R, Lauterborn W, Vogel A (2015) Dynamics of laser-induced bubble pairs. J Fluid Mech 771:706–742CrossRefGoogle Scholar
  7. Han B, Zhu R, Guo Z, Liu L, Ni X-W (2018) Control of the liquid jet formation through the symmetric and asymmetric collapse of a single bubble generated between two parallel solid plates. Eur J Mech B/Fluids 72:114–122MathSciNetCrossRefGoogle Scholar
  8. Hansen EW, Law P-L (1985) Recursive methods for computing the Abel transform and its inverse. J Opt Soc Am A 2(4):510MathSciNetCrossRefGoogle Scholar
  9. Iben U, Morozov A, Winklhofer E, Wolf F (2011) Laser-pulse interferometry applied to high-pressure fluid flow in micro channels. Exp Fluids 50(3):597–611CrossRefGoogle Scholar
  10. Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68(2):628–633CrossRefGoogle Scholar
  11. Kim B-M, Komashko AM, Rubenchik AM, Feit MD, Reidt S, Da Silva LB, Eichler J (2003) Interferometric analysis of ultrashort pulse laser-induced pressure waves in water. J Appl Phys 94(1):709–715CrossRefGoogle Scholar
  12. Koch M, Lechner C, Reuter F, Khler K, Mettin R, Lauterborn W (2016) Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Comput Fluids 126:71–90MathSciNetCrossRefGoogle Scholar
  13. Kordel S, Nowak T, Skoda R, Hussong J (2016) Combined density gradient and velocity field measurements in transient flows by of differential interferometry and long-range \(\upmu\)PIV. Exp Fluids 57(9):138CrossRefGoogle Scholar
  14. Lauterborn W, Ohl C-D (1997) Cavitation bubble dynamics. Ultrason Sonochem 4(2):65–75CrossRefGoogle Scholar
  15. Lindau O, Lauterborn W (2003) Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J Fluid Mech 479:327–348CrossRefGoogle Scholar
  16. Merzkirch WF (1965) A simple schlieren interferometer system. AIAA J 3(10):1974–1976CrossRefGoogle Scholar
  17. Merzkirch W (1987) Flow visualization, 2nd edn. Acad. Press, OrlandozbMATHGoogle Scholar
  18. Pereira F, Salvatore F, Di Felice F (2004) Measurement and modeling of propeller cavitation in uniform inflow. J Fluids Eng 126(4):671CrossRefGoogle Scholar
  19. Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dublin Philos Mag J Sci 34(200):94–98CrossRefGoogle Scholar
  20. Shen YR (1984) The principles of nonlinear optics. Wiley, New YorkGoogle Scholar
  21. Sofer M, Watterson JD, Wollin TA, Nott L, Razvi H, Denstedt JD (2002) Holmium: YAG laser lithotripsy for upper urinary tract calculi in 598 patients. J Urol 167(1):31–34CrossRefGoogle Scholar
  22. Supponen O, Obreschkow D, Kobel P, Farhat M (2015) Detailed jet dynamics in a collapsing bubble. J Phys Conf Ser 656:012038CrossRefGoogle Scholar
  23. Thiemann A, Holsteyns F, Cairs C, Mettin R (2017) Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Ultrason Sonochem 34:663–676CrossRefGoogle Scholar
  24. Tomita Y, Kodama T (2003) Interaction of laser-induced cavitation bubbles with composite surfaces. J Appl Phys 94(5):2809–2816CrossRefGoogle Scholar
  25. Veysset D, Aznev AA, Pezeril T, Kooi S, Nelson KA (2016) Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer. Sci Rep 6(1):24CrossRefGoogle Scholar
  26. Veysset D, Gutirrez-Hernndez U, Dresselhaus-Cooper L, De Colle F, Kooi S, Nelson KA, Quinto-Su PA, Pezeril T (2018) Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves. Phys Rev E 97(5):053112CrossRefGoogle Scholar
  27. Vogel A (1996) Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J Acoust Soc Am 100(1):148CrossRefGoogle Scholar
  28. Vogel A, Lauterborn W (1988) Acoustic transient generation by laserproduced cavitation bubbles near solid boundaries. J Acoust Soc Am 84(2):719–731CrossRefGoogle Scholar
  29. Vogel A, Lauterborn W, Timm R (1989) Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J Fluid Mech 206(–1):299CrossRefGoogle Scholar
  30. Wagner W, Kretzschmar H-J (2008) International steam tables. Springer, BerlinCrossRefGoogle Scholar
  31. Ward B, Emmony D (1991) Interferometric studies of the pressures developed in a liquid during infrared-laser-induced cavitation-bubble oscillation. Infrared Phys 32:489–515CrossRefGoogle Scholar
  32. Zeng Q, Gonzalez-Avila SR, Dijkink R, Koukouvinis P, Gavaises M, Ohl C-D (2018) Wall shear stress from jetting cavitation bubbles. J Fluid Mech 846:341–355MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Group Laser Measurement Techniques in Multiphase Flows, Chair of Hydraulic Fluid MachineryRuhr-University BochumBochumGermany

Personalised recommendations