Experiments in Fluids

, 59:183 | Cite as

Simultaneous micro-PIV measurements and real-time control trapping in a cross-slot channel

  • Farzan AkbaridoustEmail author
  • Jimmy Philip
  • David R. A. Hill
  • Ivan Marusic
Research Article


Here we report novel micro-PIV measurements around micron-sized objects that are trapped at the centre of a stagnation point flow generated in a cross-slow microchannel using real-time control. The method enables one to obtain accurate velocity and strain rate fields around the trapped objects under straining flows. In previous works, it has been assumed that the flow field measured in the absence of the object is the one experienced by the object in the stagnation point flow. However, the results reveal that this need not be the case and typically the strain rates experienced by the objects are higher. Therefore, simultaneously measuring the flow field around a trapped object is needed to accurately estimate the undisturbed strain rate (away from the trapped object). By combining the micro-PIV measurements with an analytical solution by Jeffery (Proc R Soc Lond A 102(715):161–179, 1922), we are able to estimate the velocity and strain rate around the trapped object, thus providing a potential fluidic method for characterising mechanical properties of micron-sized materials, which are important in biological and other applications.

Graphical abstract

A novel combination of classical micro-PIV and real-time flow control setups enabled us to measure the velocity field around a target trapped in the extensional flow, which opens up new vistas of characterisation of the mechanical properties of micron-sized objects.



The authors gratefully acknowledge the Australian Research Council for the financial support of this work. This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF).

Supplementary material

Supplementary material 1 (MP4 51 KB)

Supplementary material 2 (MP4 7393 KB)

348_2018_2637_MOESM3_ESM.pdf (1.1 mb)
Supplementary material 3 (PDF 1165 KB)


  1. Akbaridoust F (2017) Characterisation of a microfluidic hydro-trap to study the effect of straining flow on waterborne microorganisms. Ph.D. thesis, University of MelbourneGoogle Scholar
  2. Akbaridoust F, Philip J, Marusic I (2016) A miniature high strain rate device. In: Proceedings of 20th AFMC conferenceGoogle Scholar
  3. Akbaridoust F, Philip J, Marusic I (2018) Assessment of a miniature four-roll mill and a cross-slot microchannel for high-strain-rate stagnation point flows. Meas Sci Technol 29(4):045302CrossRefGoogle Scholar
  4. Alicia TGG, Yang C, Wang Z, Nguyen N-T (2016) Combinational concentration gradient confinement through stagnation flow. Lab Chip 16(2):368–376CrossRefGoogle Scholar
  5. Amsler CD (2008) Algal chemical ecology, vol 468. Springer, BerlinCrossRefGoogle Scholar
  6. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290CrossRefGoogle Scholar
  7. Barnkob R, Kähler CJ, Rossi M (2015) General defocusing particle tracking. Lab Chip 15(17):3556–3560CrossRefGoogle Scholar
  8. Bernassau AL, Glynne-Jones P, Gesellchen F, Riehle M, Hill M, Cumming DRS (2014) Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation. Ultrasonics 54(1):268–274CrossRefGoogle Scholar
  9. Cha S, Shin T, Lee SS, Shim W, Lee G, Lee SJ, Kim Y, Kim JM (2012) Cell stretching measurement utilizing viscoelastic particle focusing. Anal Chem 84(23):10471–10477CrossRefGoogle Scholar
  10. Cook PLM, Holland DP, Longmore AR (2010) Effect of a flood event on the dynamics of phytoplankton and biogeochemistry in a large temperate Australian lagoon. Limnol Oceanogr 55(3):1123–1133CrossRefGoogle Scholar
  11. Curtis MD, Sheard GJ, Fouras A (2011) Feedback control system simulator for the control of biological cells in microfluidic cross slots and integrated microfluidic systems. Lab Chip 11(14):2343–2351CrossRefGoogle Scholar
  12. De Loubens C, Deschamps J, Boedec G, Leonetti M (2015) Stretching of capsules in an elongation flow, a route to constitutive law. J Fluid Mech 767:R3CrossRefGoogle Scholar
  13. Dylla-Spears R, Townsend JE, Jen-Jacobson L, Sohn LL, Muller SJ (2010) Single-molecule sequence detection via microfluidic planar extensional flow at a stagnation point. Lab Chip 10(12):1543–1549CrossRefGoogle Scholar
  14. Gosse C, Croquette V (2002) Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J 82(6):3314–3329CrossRefGoogle Scholar
  15. Gossett DR, Henry TK, Lee SA, Ying Y, Lindgren Anne G, Yang OO, Rao J, Clark AT, Di Carlo D (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. PNAS 109(20):7630–7635CrossRefGoogle Scholar
  16. Grier DG (2003) A revolution in optical manipulation. Nature 424(6950):810–816CrossRefGoogle Scholar
  17. Hall DO, Scurlock JMO, Bolhar-Nordenkampf HR, Leegood RC, Long SP (1993) Photosynthesis and production in a changing environment: a field and laboratory manual. Chapman & Hall, LondonGoogle Scholar
  18. Henon Y, Sheard GJ, Fouras A (2014) Erythrocyte deformation in a microfluidic cross-slot channel. RSC Adv 4(68):36079–36088CrossRefGoogle Scholar
  19. Henry TK, Gossett DR, Moon YS, Masaeli M, Sohsman M, Ying Y, Mislick K, Adams RP, Rao J, Carlo DD (2013) Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci Transl Med 5(212):212ra163–212ra163CrossRefGoogle Scholar
  20. Hertz HM (1995) Standing-wave acoustic trap for nonintrusive positioning of microparticles. J Appl Phys 78(8):4845–4849CrossRefGoogle Scholar
  21. Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond A 102(715):161–179CrossRefGoogle Scholar
  22. Johnson-Chavarria EM, Tanyeri M, Schroeder CM (2011) A microfluidic-based hydrodynamic trap for single particles. J Vis Exp 47:e2517–e2517Google Scholar
  23. Johnson-Chavarria EM, Agrawal U, Tanyeri M, Kuhlman TE, Schroeder CM (2014) Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution. Lab Chip 14(15):2688–2697CrossRefGoogle Scholar
  24. Latinwo F, Hsiao K-W, Schroeder CM (2014) Nonequilibrium thermodynamics of dilute polymer solutions in flow. J Chem Phys 141(17):174903CrossRefGoogle Scholar
  25. Lee H, Purdon AM, Westervelt RM (2004) Manipulation of biological cells using a microelectromagnet matrix. Appl Phys Lett 85(6):1063–1065CrossRefGoogle Scholar
  26. Li Y, Hsiao K-W, Brockman CA, Yates DY, Robertson-Anderson RM, Kornfield JA, San Francisco MJ, Schroeder CM, McKenna GB (2015) When ends meet: circular DNA stretches differently in elongational flows. Macromolecules 48(16):5997–6001CrossRefGoogle Scholar
  27. Pajdak-Stós A, Fiakowska E, Fyda J (2001) Phormidium autumnale (cyanobacteria) defense against three ciliate grazer species. Aquat Microb Ecol 23(3):237–244CrossRefGoogle Scholar
  28. Pathak JA, Hudson SD (2006) Rheo-optics of equilibrium polymer solutions: wormlike micelles in elongational flow in a microfluidic cross-slot. Macromolecules 39(25):8782–8792CrossRefGoogle Scholar
  29. Perkins TT, Smith DE, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276(5321):2016–2021CrossRefGoogle Scholar
  30. Qiu Y, Wang H, Demore CEM, Hughes DA, Glynne-Jones P, Gebhardt S, Bolhovitins A, Poltarjonoks R, Weijer K, Schönecker A et al (2014) Acoustic devices for particle and cell manipulation and sensing. Sensors 14(8):14806–14838CrossRefGoogle Scholar
  31. Rossi M, Kähler CJ (2014) Optimization of astigmatic particle tracking velocimeters. Exp Fluids 55(9):1809CrossRefGoogle Scholar
  32. Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25(4):316–319CrossRefGoogle Scholar
  33. Schroeder CM, Babcock HP, Shaqfeh ESG, Chu S (2003) Observation of polymer conformation hysteresis in extensional flow. Science 301(5639):1515–1519CrossRefGoogle Scholar
  34. Schroeder CM, Shaqfeh ESG, Chu S (2004) Effect of hydrodynamic interactions on DNA dynamics in extensional flow: simulation and single molecule experiment. Macromolecules 37(24):9242–9256CrossRefGoogle Scholar
  35. Shenoy A, Tanyeri M, Schroeder CM (2015) Characterizing the performance of the hydrodynamic trap using a control-based approach. Microfluid Nanofluid 18(5–6):1055–1066CrossRefGoogle Scholar
  36. Shenoy A, Rao CV, Schroeder CM (2016) Stokes trap for multiplexed particle manipulation and assembly using fluidics. PNAS 113(15):3976–3981CrossRefGoogle Scholar
  37. Smith SW et al (1997) The scientist and engineer’s guide to digital signal processing. California Technical Publications, San DiegoGoogle Scholar
  38. Tanyeri M, Schroeder CM (2013) Manipulation and confinement of single particles using fluid flow. Nano Lett 13(6):2357–2346CrossRefGoogle Scholar
  39. Tanyeri M, Johnson-Chavarria EM, Schroeder CM (2010) Hydrodynamic trap for single particles and cells. Appl Phys Lett 96(22):224101CrossRefGoogle Scholar
  40. Tanyeri M, Ranka M, Sittipolkul N, Schroeder CM (2011) A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11(10):1786–1794CrossRefGoogle Scholar
  41. Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond A 146(858):501–523CrossRefGoogle Scholar
  42. Ulloa C, Ahumada A, Cordero M (2014) Effect of confinement on the deformation of microfluidic drops. Phys Rev E 89(3):033004CrossRefGoogle Scholar
  43. Wacklin P, Hoffmann L, Komárek J et al (2009) Nomenclatural validation of the genetically revised cyanobacterial genus. Dolichospermum (Ralfs ex Bornet et Flahault) comb. nova. Fottea 9(1):59–64Google Scholar
  44. Weilin X, Muller SJ (2011) Exploring both sequence detection and restriction endonuclease cleavage kinetics by recognition site via single-molecule microfluidic trapping. Lab Chip 11(3):435–442CrossRefGoogle Scholar
  45. Yang AHJ, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D (2009) Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457(7225):71–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MelbourneParkvilleAustralia
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of MelbourneParkvilleAustralia

Personalised recommendations