Experiments in Fluids

, 59:168 | Cite as

Diagnostics of the fluctuating wall shear rate components using an uncalibrated three-segment electrodiffusion sensor

  • M.-É. Lamarche-GagnonEmail author
  • V. Sobolík
  • J. Vétel
Research Article


An inverse problem is used to significantly improve the frequency response of a three-segment electrodiffusion (ED) sensor subjected to strong inertial effects in high-amplitude unsteady flows. It is shown that the fluctuating component of the wall shear rate’s magnitude and direction can be accurately determined when both variables exhibit simultaneous large-amplitude variations, even when using an uncalibrated probe. Measurements are performed in the vicinity of a rotating cylinder in motion in a highly viscous fluid with poor electrochemical diffusivity, thus establishing a harsh environment for an ED sensor. Results using the inverse problem showed strong concordance with PIV complementary measurements in most cases and further expose the potential of this non-intrusive technique for thorough wall shear stress diagnostics.

Graphical Abstract



The authors would like to acknowledge the financial support of the Canadian Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec—Nature et technologies (FRQNT). We also acknowledge the technical support of T. Lafrance from MËKANIC and J.-M. Béland for their cooperation in the design and fabrication of the experimental setup and the reviewers for valuable recommendations in the revision process.

Supplementary material

348_2018_2623_MOESM1_ESM.avi (7.4 mb)
Supplementary material 1 (avi 7534 KB)


  1. Arvia AJ, Marchiano SL, Podesta JJ (1967) The diffusion of ferrocyanide and ferricyanide ions in aqueous solutions of potassium hydroxide. Electrochim Acta 12(3):259–266CrossRefGoogle Scholar
  2. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, HobokenGoogle Scholar
  3. Berger FP, Ziai A (1983) Optimisation of experimental conditions for electrochemical mass transfer measurements. Chem Eng Res Des 61(6):377–382Google Scholar
  4. Deslouis C, Tribollet B, Tihon J (2004) Near-wall turbulence in drag reducing flows investigated by the photolithography-electrochemical probes. J Non-Newtonian Fluid Mech 123(2):141–150CrossRefGoogle Scholar
  5. Fourrié G, Keirsbulck L, Labraga L (2013) Wall shear stress characterization of a 3d bluff-body separated flow. J Fluids Struct 42:55–69CrossRefGoogle Scholar
  6. Hanratty TJ, Campbell JA (1996) Measurement of wall shear stress. In: Goldstein R (ed) Fluid mechanics measurements, 2nd edn. Taylor & Francis, Hoboken, pp 575–648Google Scholar
  7. He S, Ariyaratne C, Vardy AE (2011) Wall shear stress in accelerating turbulent pipe flow. J Fluid Mech 685:440–460CrossRefGoogle Scholar
  8. Jordan J, Ackerman E, Berger RL (1956) Polarographic diffusion coefficients of oxygen defined by activity gradients in viscous media. J Am Chem Soc 78(13):2979–2983CrossRefGoogle Scholar
  9. Labraga L, Bourabaa N, Berkah T (2002) Wall shear stress from a rotating cylinder in cross flow using the electrochemical technique. Exp Fluids 33(3):488–496CrossRefGoogle Scholar
  10. Lamarche-Gagnon MÉ (2018) Développement de la méthode électrodiffusionnelle pour la mesure instantanée des deux composantes du frottement pariétal. PhD thesis, Polytechnique Montréal (Canada)Google Scholar
  11. Lamarche-Gagnon MÉ, Vétel J (2018) An inverse problem to assess the two-component unsteady wall shear rate. Int J Therm Sci 130:278–288CrossRefGoogle Scholar
  12. Mao ZX, Hanratty TJ (1991a) Analysis of wall shear stress probes in large amplitude unsteady flows. Int J Heat Mass Transfer 34(1):281–290CrossRefGoogle Scholar
  13. Mao ZX, Hanratty TJ (1991b) Application of an inverse mass transfer method to the measurement of turbulent fluctuations in the velocity gradient at the wall. Exp Fluids 11(1):65–73CrossRefGoogle Scholar
  14. Mao ZX, Hanratty TJ (1992) Measurement of wall shear rate in large amplitude unsteady reversing flows. Exp Fluids 12(4):342–350CrossRefGoogle Scholar
  15. Maquinghen T (1999) Métrologie tridimensionnelle instationnaire à l’aide de la méthode polarographique. PhD thesis, ValenciennesGoogle Scholar
  16. Naughton JW, Sheplak M (2002) Modern developments in shear-stress measurement. Prog Aerosp Sci 38(6):515–570CrossRefGoogle Scholar
  17. Ozisik MN (2000) Inverse heat transfer: fundamentals and applications. CRC Press, RouteledgeGoogle Scholar
  18. Pauli J, Sobolik V, Onken U (1991) Oxygen as depolarizer in electrodiffusion diagnostics of flow. Chem Eng Sci 46(12):3302–3304CrossRefGoogle Scholar
  19. Rehimi F, Aloui F, Nasrallah SB, Doubliez L, Legrand J (2006) Inverse method for electrodiffusional diagnostics of flows. Int J Heat Mass Transfer 49(7):1242–1254CrossRefGoogle Scholar
  20. Reiss LP, Hanratty TJ (1963) An experimental study of the unsteady nature of the viscous sublayer. AlChE J 9(2):154–160CrossRefGoogle Scholar
  21. Schlichting H, Gersten K (2000) Boundary-layer theory. Springer, BerlinCrossRefGoogle Scholar
  22. Selman JR, Tobias CW (1978) Mass-transfer measurements by the limiting-current technique. Adv Chem Eng 10:211–318CrossRefGoogle Scholar
  23. Sobolík V, Wein O, Čermák J (1987) Simultaneous measurement of film thickness and wall shear stress in wavy flow of non-newtonian liquids. Collect Czech Chem Commun 52(4):913–928CrossRefGoogle Scholar
  24. Sobolík V, Tihon J, Wein O, Wichterle K (1998) Calibration of electrodiffusion friction probes using a voltage-step transient. J Appl Electrochem 28(3):329–335CrossRefGoogle Scholar
  25. Tihon J (2014) Application of the electrodiffusion method for near-wall flow diagnostics. EPJ Web Conf 67:2117CrossRefGoogle Scholar
  26. Wein O, Sobolík V (1987) Theory of direction sensitive probes for electrodiffusion measurement of wall velocity gradients. Collect Czech Chem Commun 52(9):2169–2180CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LADYF, Department of mechanical engineeringPolytechnique MontréalMontrealCanada
  2. 2.LaSIE, Faculty of Science and TechnologyUniversité de La RochelleLa RochelleFrance

Personalised recommendations