Experiments in Fluids

, 59:163 | Cite as

A volumetric temperature and velocity measurement technique for microfluidics based on luminescence lifetime imaging

  • Julian MassingEmail author
  • Christian J. Kähler
  • Christian Cierpka
Research Article


A novel optical measurement technique is introduced and qualified which enables the simultaneous determination of the three-dimensional temperature field and the three components of the three-dimensional velocity field in microfluidic applications with only one camera. The temperature is obtained by evaluating the emission decay of individual luminescent polymer particles, whereas the velocity field can be calculated simultaneously from the flow-induced shift of individual particle images in time. To acquire the depth information, the well-established astigmatism particle-tracking velocimetry technique is employed. With this method, systematic errors caused by volume illumination and the reduced spatial resolution due to window averaging as in micro particle image velocimetry (µ-PIV) or laser-induced fluorescence (LIF) can be avoided. The technique can easily be optimized for the investigated temperature range and flow velocities and offers an exceptionally high spatial resolution and accuracy.

Graphical abstract



Financial support from the ‘Arbeitsgemeinschaft industrieller Forschungsvereinigungen’ (AiF) under the grant ‘Schnellstart: Entwicklung eines Verfahrens zum gezielten Vorheizen einer Direkt-Methanol-Brennstoffzelle mit minimalem Energieaufwand’ (18941 N) and from the German Research Foundation (DFG), under the framework of the Emmy-Noether grant ‘Kontrollierte elektrochemische Energieumwandlung durch oberflächennahe Strömungsbeeinflussung’ (CI 185/3) is gratefully appreciated.


  1. Abram C, Fond B, Beyrau F (2015) High-precision flow temperature imaging using ZnO thermographic phosphor tracer particles. Opt Express 23:19453–19468CrossRefGoogle Scholar
  2. Abram C, Pougin M, Beyrau F (2016) Temperature field measurements in liquids using ZnO thermographic phosphor tracer particles. Exp Fluids 57:1–14CrossRefGoogle Scholar
  3. Aldén M, Omrane A, Richter M, Särner G (2011) Thermographic phosphors for thermometry: a survey of combustion applications. Prog Energy Combust Sci 37:422–461CrossRefGoogle Scholar
  4. Augustsson P, Barnkob R, Wereley ST, Bruus H, Laurell T (2011) Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization. Lab Chip 11:4152–4164CrossRefGoogle Scholar
  5. Cellini F, Peterson SD, Porfiri M (2017) Flow velocity and temperature sensing using thermosensitive fluorescent polymer seed particles in water. Int J Smart Nano Mater 8:232–252CrossRefGoogle Scholar
  6. Cheng KC, Hwang GJ (1969) Numerical solution for combined free and forced laminar convection in horizontal rectangular channels. J Heat Transf 91:59–66CrossRefGoogle Scholar
  7. Cierpka C, Kähler CJ (2012) Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics. J Vis 15:1–31CrossRefGoogle Scholar
  8. Cierpka C, Rossi M, Segura R, Kähler CJ (2010a) On the calibration of astigmatism particle tracking velocimetry for microflows. Meas Sci Technol 22:015401CrossRefGoogle Scholar
  9. Cierpka C, Segura R, Hain R, Kähler CJ (2010b) A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics. Meas Sci Technol 21:045401CrossRefGoogle Scholar
  10. Cierpka C, Lütke B, Kähler CJ (2013) Higher order multi-frame particle tracking velocimetry. Exp Fluids 54:1533CrossRefGoogle Scholar
  11. Dabiri D (2009) Digital particle image thermometry/velocimetry: a review. Exp Fluids 46:191–241CrossRefGoogle Scholar
  12. Faghri A, Guo Z (2005) Challenges and opportunities of thermal management issues related to fuel cell technology and modeling. Int J Heat Mass Transf 48:3891–3920CrossRefGoogle Scholar
  13. Funatani S, Fujisawa N, Ikeda H (2004) Simultaneous measurement of temperature and velocity using two-colour LIF combined with PIV with a colour CCD camera and its application to the turbulent buoyant plume. Meas Sci Technol 15:983CrossRefGoogle Scholar
  14. Hiller WJ, Koch ST, Kowalewski TA (1993) Onset of natural convection in a cube. Int J Heat Mass Transf 36:3251–3263CrossRefGoogle Scholar
  15. Hoffmann J (2015) Taschenbuch der Messtechnik. Carl Hanser Verlag GmbH Co KG, MunichCrossRefGoogle Scholar
  16. Hu H, Koochesfahani M, Lum C (2006) Molecular tagging thermometry with adjustable temperature sensitivity. Exp Fluids 40:753–763CrossRefGoogle Scholar
  17. Hu H, Jin Z, Nocera D, Lum C, Koochesfahani M (2010) Experimental investigations of micro-scale flow and heat transfer phenomena by using molecular tagging techniques. Meas Sci Technol 21:085401CrossRefGoogle Scholar
  18. Irwansyah R, Massing J, Cierpka C, Kähler CJ (2015) Investigation of the heat transfer in a square microchannel with Al2O3-H2O nanofluids. Tech Messen 82:572–577Google Scholar
  19. Kähler CJ, Scharnowski S, Cierpka C (2012a) On the resolution limit of digital particle image velocimetry. Exp Fluids 52:1629–1639CrossRefGoogle Scholar
  20. Kähler CJ, Scharnowski S, Cierpka C (2012b) On the uncertainty of digital PIV and PTV near walls. Exp Fluids 52:1641–1656CrossRefGoogle Scholar
  21. Kähler CJ, Astarita T, Vlachos PP, Sakakibara J, Hain R, Discetti S, Foy R, Cierpka C (2016) Main results of the 4th international PIV challenge. Exp Fluids 57:1–71CrossRefGoogle Scholar
  22. Kestin J, Khalifa HE, Correia RJ (1981) Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20–150 \(^\circ\)C and the pressure range 0.1-35 MPa. J Phys Chem Ref Data 10:71–88CrossRefGoogle Scholar
  23. Kiebert F, Wege S, Massing J, König J, Cierpka C, Weser R, Schimdt H (2017) 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison. Lab Chip 17:2104–2114CrossRefGoogle Scholar
  24. Kim M, Yoda M (2010) Dual-tracer fluorescence thermometry measurements in a heated channel. Exp Fluids 49:257–266CrossRefGoogle Scholar
  25. Kim M, Yoda M (2014) The spatial resolution of dual-tracer fluorescence thermometry in volumetrically illuminated channels. Exp Fluids 55:1–12Google Scholar
  26. Kimura I, Takamori T, Yamauchi H, Ozawa M, Takenaka N, Sakaguchi T (1988) Simultaneous measurement of flow and temperature fields based on color image information. Nagare No Kashika 8:185–188Google Scholar
  27. Luong TD, Phan VN, Nguyen NT (2011) High-throughput micromixers based on acoustic streaming induced by surface acoustic wave. Microfluidics and Nanofluidics 10:619–625CrossRefGoogle Scholar
  28. Massing J, Kaden D, Kähler CJ, Cierpka C (2016) Luminescent two-color tracer particles for simultaneous velocity and temperature measurements in microfluidics. Meas Sci Technol 27:015301CrossRefGoogle Scholar
  29. Massing J, Kähler CJ, Cierpka C (2018) Vergleichende Analyse eines Ein- und Mehrkamerasystems zur simultanen, volumetrischen Temperatur-und Geschwindigkeitsmessung für die Mikrofluidik. tm-Technisches Messen 85:97–103CrossRefGoogle Scholar
  30. Meinhart CD, Wereley ST (2003) The theory of diffraction-limited resolution in microparticle image velocimetry. Meas Sci Technol 14:1047–1053CrossRefGoogle Scholar
  31. Ondrus V, Meier RJ, Klein C, Henne U, Schäferling M, Beifuss U (2015) Europium 1, 3-di (thienyl) propane-1, 3-diones with outstanding properties for temperature sensing. Sens Actuators A Phys 233:434–441CrossRefGoogle Scholar
  32. Ozbek H, Phillips SL (1980) Thermal conductivity of aqueous NaCl solutions from 20 to 330 \(^\circ\)C. J Chem Eng Data 25:263–267CrossRefGoogle Scholar
  33. Qu W, Mudawar I (2002) Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int J Heat Mass Transf 45:2549–2565CrossRefGoogle Scholar
  34. Raffel M, Willert CE, Scarano F, Käler CJ, Wereley ST, Kompenhans J (2018) Particle image velocimetry: a practical guide. Springer, New YorkCrossRefGoogle Scholar
  35. Rossi M, Segura R, Cierpka C, Kähler CJ (2012) On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV. Exp Fluids 52:1063–1075CrossRefGoogle Scholar
  36. Sakakibara J, Adrian RJ (2004) Measurement of temperature field of a Rayleigh-Bernard convection using two-color laser-induced fluorescence. Exp Fluids 37:331–340CrossRefGoogle Scholar
  37. Schiepel D, Schmeling D, Wagner C (2016) Simultaneous velocity and temperature measurements in turbulent Rayleigh-Bénard convection based on combined Tomo-PIV and PIT. In: Proceedings of the 18th international symposium on application of laser and imaging techniques to fluid mechanics. Lisbon, Portugal, 4–7 July, pp 3216–3231Google Scholar
  38. Schmeling D, Bosbach J, Wagner C (2015) Measurements of the dynamics of thermal plumes in turbulent mixed convection based on combined PIT and PIV. Exp Fluids 56:134CrossRefGoogle Scholar
  39. Scott K, Taama WM, Kramer S, Argyropoulos P, Sundmacher K (1999) Limiting current behaviour of the direct methanol fuel cell. Electrochim Acta 45:945–957CrossRefGoogle Scholar
  40. Segura R, Cierpka C, Rossi M, Joseph S, Bunjes H, Kähler CJ (2013) Non-encapsulated thermo-liquid crystals for digital particle tracking thermography/velocimetry in microfluidics. Microfluid Nanofluidics 14:445–456CrossRefGoogle Scholar
  41. Segura R, Rossi M, Cierpka C, Kähler CJ (2015) Simultaneous three-dimensional temperature and velocity field measurements using astigmatic imaging of non-encapsulated thermo-liquid crystal (TLC) particles. Lab Chip 15:660–663CrossRefGoogle Scholar
  42. Shafii M, Lum C, Koochesfahani M (2010) In situ LIF temperature measurements in aqueous ammonium chloride solution during uni-directional solidification. Exp Fluids 48:651–662CrossRefGoogle Scholar
  43. Someya S, Li Y, Ishii K, Okamoto K (2011) Combined two-dimensional velocity and temperature measurements of natural convection using a high-speed camera and temperature-sensitive particles. Exp Fluids 50:65–73CrossRefGoogle Scholar
  44. Steinke ME, Kandlikar SG (2005) Single-phase liquid heat transfer in microchannels. In: ASME 3rd international conference on microchannels and minichannels, american society of mechanical engineers. Toronto, Canada, 13–15 June, pp 667–678Google Scholar
  45. Tullius JF, Vajtai R, Bayazitoglu Y (2011) A review of cooling in microchannels. Heat Transf Eng 32:527–541CrossRefGoogle Scholar
  46. Vogt J, Stephan P (2012) Using microencapsulated fluorescent dyes for simultaneous measurement of temperature and velocity fields. Meas Sci Technol 23:105–306CrossRefGoogle Scholar
  47. Woods RJ, Scypinski S, Love LC (1984) Transient digitizer for the determination of microsecond luminescence lifetimes. Anal Chem 56:1395–1400CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Fluid Mechanics and AerodynamicsBundeswehr University MunichNeubibergGermany
  2. 2.Institute of Thermodynamics and Fluid MechanicsTechnical University IlmenauIlmenauGermany

Personalised recommendations