Advertisement

Der Ophthalmologe

, Volume 116, Issue 6, pp 509–517 | Cite as

Prävention der Myopie

  • F. SchaeffelEmail author
Leitthema
  • 141 Downloads

Zusammenfassung

Um die Komplikationen hoher Myopie zu vermeiden, wäre es am besten, bereits die Entstehung einer Myopie zu verhindern. Viele Arbeiten haben nahegelegt, dass der viel zitierte „myopia boom“ mit der Seherfahrung während der intensivierten Ausbildung zusammenhängt und nicht mit Änderungen genetischer Faktoren. Zur Vermeidung der Myopie wäre es deshalb am sinnvollsten, die Seherfahrung von Kindern besser zu steuern. In diesem Beitrag sind neue Verfahren zur Dokumentierung und Verbesserung der Sehgewohnheiten beschrieben: neue Sensoren am Brillengestell zur Messung von Helligkeit, Leseabstand und Lesedauer, geänderte Textkontraste beim Lesen, die mögliche Rolle von Smartphones sowie einige noch nicht komplett untersuchte oral applizierte Substanzen zur Hemmung der Myopie.

Schlüsselwörter

Kinder Seherfahrung Smartphone Lesen Textkontrast 

Prevention of myopia

Abstract

To avoid complications of high myopia the best solution would be to prevent myopia development from the very beginning. Many studies have suggested that the frequently quoted myopia boom is related to changes in visual experiences during more demanding education and not due to changes in genetic factors. To avoid myopia development it would therefore be best to carry out a better control of visual experience of children. In this article new approaches are described to record and improve visual habits in children, e.g. new sensors attached to the spectacle frames to document brightness, reading distance and reading duration, changes in text contrast polarity during reading, potential role of smartphones and some not yet fully explored orally applied substances to inhibit myopia.

Keywords

Children Visual experience Smartphones Reading Text contrast 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

F. Schaeffel gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Tideman JWL, Polling JR, Jaddoe VWV, Vingerling JR, Klaver CCW (2019) Environmental risk factors can reduce axial length elongation and myopia incidence in 6‑ to 9‑year-old children. Ophthalmology 126:127–136.  https://doi.org/10.1016/j.ophtha.2018.06.029 CrossRefPubMedGoogle Scholar
  2. 2.
    Zadnik K, Sinnott LT, Cotter SA, Jones-Jordan LA, Kleinstein RN, Manny RE, Twelker JD, Mutti DO, Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE) Study Group (2015) Prediction of juvenile-onset myopia. Jama Ophthalmol 133:683–689.  https://doi.org/10.1001/jamaophthalmol.2015.0471 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hammond CJ, Snieder H, Gilbert CE, Spector TD (2001) Genes and environment in refractive error: the twin eye study. Invest Ophthalmol Vis Sci 42:1232–1236PubMedGoogle Scholar
  4. 4.
    Jones-Jordan LA, Sinnott LT, Manny RE, Cotter SA, Kleinstein RN, Mutti DO, Twelker JD, Zadnik K, Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE) Study Group (2010) Early childhood refractive error and parental history of myopia as predictors of myopia. Invest Ophthalmol Vis Sci 51:115–121.  https://doi.org/10.1167/iovs.08-3210 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rose KA, French AN, Morgan IG (2016) Environmental Factors and Myopia: Paradoxes and Prospects for Prevention. Asia Pac J Ophthalmol (Phila) 5:403–410CrossRefGoogle Scholar
  6. 6.
    Tedja MS, Wojciechowski R, Hysi PG, Eriksson N, Furlotte NA, Verhoeven VJM et al (2018) Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat Genet 50:834–848.  https://doi.org/10.1038/s41588-018-0127-7 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mirshahi A, Ponto KA, Hoehn R, Zwiener I, Zeller T, Lackner K, Beutel ME, Pfeiffer N (2014) Myopia and level of education: results from the Gutenberg Health Study. Ophthalmology 121:2047–2052.  https://doi.org/10.1016/j.ophtha.2014.04.017 CrossRefPubMedGoogle Scholar
  8. 8.
    Williams KM, Bertelsen G, Cumberland P, Wolfram C, Verhoeven VJ et al (2015) Increasing prevalence of myopia in europe and the impact of education. Ophthalmology 122:1489–1497.  https://doi.org/10.1016/j.ophtha.2015.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nickels S, Hopf S, Pfeiffer N, Schuster AK (2019) Myopia is associated with education: Results from NHANES 1999–2008. PLoS ONE 14(e0211196).  https://doi.org/10.1371/journal.pone.0211196 (eCollection 2019)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mountjoy E, Davies NM, Plotnikov D, Smith GD, Rodriguez S, Williams CE, Guggenheim JA, Atan D (2018) Education and myopia: assessing the direction of causality by mendelian randomisation. BMJ 361:k2022.  https://doi.org/10.1136/bmj CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Morgan IG, French AN, Ashby RS, Guo X, Ding X, He M, Rose KA (2018) The epidemics of myopia: aetiology and prevention. Prog Retin Eye Res 62:134–149.  https://doi.org/10.1016/j.preteyeres.2017.09.004 CrossRefPubMedGoogle Scholar
  12. 12.
    French AN, Ashby RS, Morgan IG, Rose KA (2013) Time outdoors and the prevention of myopia. Exp Eye Res 114:58–68.  https://doi.org/10.1016/j.exer.2013.04.018 CrossRefPubMedGoogle Scholar
  13. 13.
    Norton TT, Siegwart JT Jr (2013) Light levels, refractive development, and myopia—a speculative review. Exp Eye Res 114:48–57.  https://doi.org/10.1016/j.exer.2013.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Landis EG, Yang V, Brown DM, Pardue MT, Read SA (2018) Dim light exposure and myopia in children. Invest Ophthalmol Vis Sci 59:4804–4811.  https://doi.org/10.1167/iovs.18-24415 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li SM, Li SY, Kang MT, Zhou Y, Liu LR, Li H, Wang YP, Zhan SY, Gopinath B, Mitchell P, Wang N, Anyang Childhood Eye Study Group (2015) Near work related parameters and myopia in Chinese children: the Anyang childhood eye study. PLOS ONE 10(e0134514):2015.  https://doi.org/10.1371/journal.pone.0134514 CrossRefGoogle Scholar
  16. 16.
    Hsu CC, Huang N, Lin PY, Fang SY, Tsai DC, Chen SY, Tsai CY, Woung LC, Chiou SH, Liu CJ (2017) Risk factors for myopia progression in second-grade primary school children in Taipei: a population-based cohort study. Br J Ophthalmol 101:1611–1617.  https://doi.org/10.1136/bjophthalmol-2016-309299 CrossRefPubMedGoogle Scholar
  17. 17.
    Pärssinen O, Kauppinen M (2016) Associations of reading posture, gaze angle and reading distance with myopia and myopic progression. Acta Ophthalmol 94:775–779.  https://doi.org/10.1111/aos.13148 CrossRefPubMedGoogle Scholar
  18. 18.
    Wu PC, Chang LC, Niu Y‑Z, Chen M‑L, Liao L‑L, Chen C‑T (2018) Myopia prevention in Taiwan. Ann Eye Sci 3:12.  https://doi.org/10.21037/aes.2018.01.05 CrossRefGoogle Scholar
  19. 19.
    Wang J, He XG, Xu X (2018) The measurement of time spent outdoors in child myopia research: a systematic review. Int J Ophthalmol 11:1045–1052.  https://doi.org/10.18240/ijo.2018.06.24 (eCollection 2018)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ostrin LA (2017) Objectively measured light exposure in emmetropic and myopic adults. Optom Vis Sci 94:229–238.  https://doi.org/10.1097/OPX.0000000000001013 CrossRefPubMedGoogle Scholar
  21. 21.
    Verkicharla PK, Ramamurthy D, Nguyen QD, Zhang X, Pu SH, Malhotra R, Ostbye T, Lamoureux EL, Saw SM (2017) Development of the FitSight Fitness Tracker to Increase Time Outdoors to Prevent Myopia. Transl Vis Sci Technol 6:20.  https://doi.org/10.1167/tvst.6.3.20 (eCollection 2017 Jun)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Read SA, Collins MJ, Vincent SJ (2014) Light exposure and physical activity in myopic and emmetropic children. Optom Vis Sci 91:330–341.  https://doi.org/10.1097/OPX.0000000000000160 CrossRefPubMedGoogle Scholar
  23. 23.
    Sherwin JC, Hewitt AW, Coroneo MT, Kearns LS, Griffiths LR, Mackey DA (2012) The association between time spent outdoors and myopia using a novel biomarker of outdoor light exposure. Invest Ophthalmol Vis Sci 53:4363–4370.  https://doi.org/10.1167/iovs.11-8677 CrossRefPubMedGoogle Scholar
  24. 24.
    Xiong S, Sankaridurg P, Naduvilath T, Zang J, Zou H, Zhu J, Lv M, He X, Xu X (2017) Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review. Acta Ophthalmol 95:551–566.  https://doi.org/10.1111/aos.13403 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Brennan NA, Cheng X (2018) Commonly Held Beliefs About Myopia That Lack a Robust Evidence Base. Eye Contact Lens.  https://doi.org/10.1097/ICL.0000000000000566 CrossRefPubMedGoogle Scholar
  26. 26.
    Dolgin E (2015) The myopia boom. Nature 519(7543):276–278.  https://doi.org/10.1038/519276a CrossRefPubMedGoogle Scholar
  27. 27.
    Wesemann W (2018) Analysis of spectacle lens prescriptions shows no increase of myopia in Germany from 2000 to 2015. Ophthalmologe 115:409–417CrossRefGoogle Scholar
  28. 28.
    Smith EL 3rd, Hung LF, Huang J, Arumugam B (2013) Effects of local myopic defocus on refractive development in monkeys. Optom Vis Sci 90:1176–1186.  https://doi.org/10.1097/OPX.0000000000000038 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Morgan I, Rose K (2005) How genetic is school myopia. Prog Retin Eye Res 24:1–38CrossRefGoogle Scholar
  30. 30.
    Gwiazda J, Thorn F, Bauer J, Held R (1993) Myopic children show insufficient accommodative response to blur. Invest Ophthalmol Vis Sci 34:690–694PubMedGoogle Scholar
  31. 31.
    Mutti DO, Mitchell GL, Moeschberger ML, Jones LA, Zadnik K (2002) Parental myopia, near work, school achievement, and children’s refractive error. Invest Ophthalmol Vis Sci 43:3633–3640PubMedGoogle Scholar
  32. 32.
    Aleman A, Schaeffel F (2018) Lag of accommodation does not predict changes in eye growth in chickens. Vis Res 149:77–85.  https://doi.org/10.1016/j.visres.2018.06.007 CrossRefPubMedGoogle Scholar
  33. 33.
    Aleman AC, Wang M, Schaeffel F (2018) Reading and myopia: contrast polarity matters. Sci Rep 8:10840.  https://doi.org/10.1038/s41598-018-28904-x CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Trier K, Munk Ribel-Madsen S, Cui D, Brøgger Christensen S (2008) Systemic 7‑methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study. J Ocul Biol Dis Infor 2(4):85–93.  https://doi.org/10.1007/s12177-008-9013-3 CrossRefGoogle Scholar
  35. 35.
    Hung LF, Arumugam B, Ostrin L, Patel N, Trier K, Jong M, Smith EL III (2018) The adenosine receptor antagonist, 7‑Methylxanthine, alters emmetropizing responses in infant macaques. Invest Ophthalmol Vis Sci 59:472–486.  https://doi.org/10.1167/iovs.17-22337 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mori K, Kurihara T, Miyauchi M, Ishida A, Jiang X, Ikeda SI, Torii H, Tsubota K (2019) Oral crocetin administration suppressed refractive shift and axial elongation in a murine model of lens-induced myopia. Sci Rep 9:295.  https://doi.org/10.1038/s41598-018-36576-w CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bitzer M, Schaeffel F (2002) Defocus-induced changes in ZENK expression in the chicken retina. Invest Ophthalmol Vis Sci 43:246–252PubMedGoogle Scholar
  38. 38.
    Omar I (2018) Effect of bilberry extract on slowing high-myopia progression in children: 2‑year follow-up study. Clin Ophthalmol 12:2575–2579.  https://doi.org/10.2147/OPTH.S187949 (eCollection 2018)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Sektion für Neurobiologie des Auges, Forschungsinstitut für AugenheilkundeUniversität TübingenTübingenDeutschland

Personalised recommendations