Advertisement

Statement and supplementary statement from the BVA, the DOG, and the RG on laser treatment of drusen in age-related macular degeneration (AMD)

August 2017, update October 2018
  • Professional Association of German Ophthalmologists (Berufsverband der Augenärzte Deutschlands e. V., BVA)
  • German Society of Ophthalmology (Deutsche Ophthalmologische Gesellschaft, DOG)Email author
  • German Retina Society (Retinologische Gesellschaft e. V., RG)
Leitlinien, Stellungnahmen und Empfehlungen
  • 6 Downloads

Statement from the BVA, the DOG, and the RG on laser treatment of drusen in age-related macular degeneration (AMD)—August 2017

Key messages

  • Although conventional laser coagulation of drusen in age-related macular degeneration (AMD) results in their regression, it does not, according to current knowledge, reduce the risk of AMD progression and should therefore not be performed.

  • Newer “micropulse” and/or “subthreshold laser techniques” are still undergoing clinical trials for early and intermediate dry AMD (in the absence of geographic atrophy). There is currently insufficient scientific evidence to conclusively assess the efficacy of these techniques in AMD.

  • At present, no form of retinal laser treatment for dry AMD should be performed outside of clinical trials.

Background

AMD is a retinal disorder associated with deposits of extracellular debris (drusen) and pigment changes in the retina [1]. It progresses from early to intermediate and on to late AMD over, on average, 10 years [1]....

Stellungnahme und ergänzende Stellungnahme des BVA, der DOG und der RG zur Lasertherapie von Drusen bei altersabhängiger Makuladegeneration (AMD)

Stand August 2017, Update Oktober 2018

Notes

Compliance with ethical guidelines

Conflict of interest

See Table 1 in the Appendix.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

The supplement containing this article is not sponsored by industry.

References

  1. 1.
    Lim LS, Mitchell P, Seddon JM et al (2012) Age-related macular degeneration. Lancet 379(9827):1728–1738.  https://doi.org/10.1016/S0140-6736(12)60282-7 CrossRefPubMedGoogle Scholar
  2. 2.
    Jobling AI, Guymer RH, Vessey KA et al (2015) Nanosecond laser therapy reverses pathologic and molecular changes in age-related macular degeneration without retinal damage. FASEB J 29(2):696–710.  https://doi.org/10.1096/fj.14-262444 CrossRefPubMedGoogle Scholar
  3. 3.
    Treumer F, Klettner A, Baltz J et al (2012) Vectorial release of matrix metalloproteinases (MMPs) from porcine RPE-choroid explants following selective retina therapy (SRT): towards slowing the macular ageing process. Exp Eye Res 97(1):63–72.  https://doi.org/10.1016/j.exer.2012.02.011 CrossRefPubMedGoogle Scholar
  4. 4.
    Marshall J, Mellerio J (1967) Pathological development of retinal laser photocoagulations. Exp Eye Res 6(4):303–308.  https://doi.org/10.1016/S0014-4835(67)80002-2 CrossRefPubMedGoogle Scholar
  5. 5.
    Del Priore LV, Glaser BM, Quigley HA et al (1989) Response of pig retinal pigment epithelium to laser photocoagulation in organ culture. Arch Ophthalmol 107(1):119–122.  https://doi.org/10.1001/archopht.1989.01070010121039 CrossRefPubMedGoogle Scholar
  6. 6.
    Framme C, Kobuch K, Eckert E et al (2002) RPE in perfusion tissue culture and its response to laser application. Preliminary report. Ophthalmologica 216(5):320–328.  https://doi.org/10.1159/000066184 CrossRefPubMedGoogle Scholar
  7. 7.
    Wallow IH (1984) Repair of the pigment epithelial barrier following photocoagulation. Arch Ophthalmol 102(1):126–135.  https://doi.org/10.1001/archopht.1984.01040030104047 CrossRefPubMedGoogle Scholar
  8. 8.
    Framme C, Roider J, Brinkmann R et al (2008) Basic principles and clinical application of retinal laser therapy. Klin Monbl Augenheilkd 225(4):259–268.  https://doi.org/10.1055/s-2008-1027202 CrossRefPubMedGoogle Scholar
  9. 9.
    Frennesson C, Nilsson SE (1998) Prophylactic laser treatment in early age related maculopathy reduced the incidence of exudative complications. Br J Ophthalmol 82:1169–1174CrossRefGoogle Scholar
  10. 10.
    Sigelman J (1991) Foveal drusen resorption one year after perifoveal laser photocoagulation. Ophthalmology 98(9):1379–1383.  https://doi.org/10.1016/S0161-6420(91)32122-5 CrossRefPubMedGoogle Scholar
  11. 11.
    Wetzig PC (1988) Treatment of drusen-related aging macular degeneration by photocoagulation. Trans Am Ophthalmol Soc 86:276–290PubMedPubMedCentralGoogle Scholar
  12. 12.
    Guymer RH, Gross-Jendroska M, Owens SL et al (1997) Laser treatment in subjects with high-risk clinical features of age-related macular degeneration. Posterior pole appearance and retinal function. Arch Ophthalmol 115(5):595–603.  https://doi.org/10.1001/archopht.1997.01100150597004 CrossRefGoogle Scholar
  13. 13.
    Little HL, Showman JM, Brown BW (1997) A pilot randomized controlled study on the effect of laser photocoagulation of confluent soft macular drusen. Ophthalmology 104(4):623–631.  https://doi.org/10.1016/S0161-6420(97)30261-9 CrossRefPubMedGoogle Scholar
  14. 14.
    Sarks SH, Arnold JJ, Sarks JP et al (1996) Prophylactic perifoveal laser treatment of soft drusen. Aust N Z J Ophthalmol 24(1):15–26.  https://doi.org/10.1111/j.1442-9071.1996.tb01546.x CrossRefPubMedGoogle Scholar
  15. 15.
    Figueroa MS, Regueras A, Bertrand J et al (1997) Laser photocoagulation for macular soft drusen. Updated results. Retina 17(5):378–384CrossRefGoogle Scholar
  16. 16.
    The Choroidal Neovascularization Prevention Trial Research Group (1998) Choroidal neovascularization in the Choroidal Neovascularization Prevention Trial. Ophthalmology 105(8):1364–1372.  https://doi.org/10.1016/S0161-6420(98)98014-9 CrossRefGoogle Scholar
  17. 17.
    Choroidal Neovascularization Prevention Trial Research Group. (1998) Laser treatment in eyes with large drusen. Short-term effects seen in a pilot randomized clinical trial. Ophthalmology 105(1):11–23CrossRefGoogle Scholar
  18. 18.
    Virgili G, Michelessi M, Parodi MB et al (2015) Laser treatment of drusen to prevent progression to advanced age-related macular degeneration. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD006537.pub3 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Olk RJ, Friberg TR, Stickney KL et al (1999) Therapeutic benefits of infrared (810-nm) diode laser macular grid photocoagulation in prophylactic treatment of nonexudative age-related macular degeneration: two-year results of a randomized pilot study. Ophthalmology 106(11):2082–2090.  https://doi.org/10.1016/S0161-6420(99)90487-6 CrossRefPubMedGoogle Scholar
  20. 20.
    Framme C, Roider J (2004) Immediate and long-term changes of fundus autofluorescence in continuous wave laser lesions of the retina. Ophthalmic Surg Lasers Imaging 35(2):131–138CrossRefGoogle Scholar
  21. 21.
    Morgan CM, Schatz H (1989) Atrophic creep of the retinal pigment epithelium after focal macular photocoagulation. Ophthalmology 96(1):96–103.  https://doi.org/10.1016/S0161-6420(89)32924-1 CrossRefPubMedGoogle Scholar
  22. 22.
    Lee H, Alt C, Pitsillides CM et al (2007) Optical detection of intracellular cavitation during selective laser targeting of the retinal pigment epithelium: dependence of cell death mechanism on pulse duration. J Biomed Opt 12(6):64034.  https://doi.org/10.1117/1.2804078 CrossRefGoogle Scholar
  23. 23.
    Brinkmann R, Schule G, Neumann J et al (2006) Selective retina therapy: methods, technique, and online dosimetry. Ophthalmologe 103(10):839–849.  https://doi.org/10.1007/s00347-006-1416-6 CrossRefPubMedGoogle Scholar
  24. 24.
    Framme C, Schuele G, Roider J et al (2004) Influence of pulse duration and pulse number in selective RPE laser treatment. Lasers Surg Med 34(3):206–215.  https://doi.org/10.1002/lsm.20022 CrossRefPubMedGoogle Scholar
  25. 25.
    Roider J, Hillenkamp F, Flotte T et al (1993) Microphotocoagulation: selective effects of repetitive short laser pulses. Proc Natl Acad Sci Usa 90(18):8643–8647CrossRefGoogle Scholar
  26. 26.
    Roider J, Michaud NA, Flotte TJ et al (1992) Response of the retinal pigment epithelium to selective photocoagulation. Arch Ophthalmol 110(12):1786–1792.  https://doi.org/10.1001/archopht.1992.01080240126045 CrossRefPubMedGoogle Scholar
  27. 27.
    Schuele G, Rumohr M, Huettmann G et al (2005) RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen. Invest Ophthalmol Vis Sci 46(2):714–719.  https://doi.org/10.1167/iovs.04-0136 CrossRefPubMedGoogle Scholar
  28. 28.
    Dorin G (2003) Subthreshold and micropulse diode laser photocoagulation. Semin Ophthalmol 18(3):147–153.  https://doi.org/10.1076/soph.18.3.147.29812 CrossRefPubMedGoogle Scholar
  29. 29.
    Vujosevic S, Martini F, Longhin E et al (2015) Subthreshold micropulse yellow laser versus subthreshold micropulse infrared laser in center-involving diabetic macular edema: morphologic and functional safety. Retina 35(8):1594–1603.  https://doi.org/10.1097/IAE.0000000000000521 CrossRefPubMedGoogle Scholar
  30. 30.
    Gabel VP, Birngruber R, Hillenkamp F (1978) Visible and near infrared light absorption in pigment epithelium and choroid. In: Shimizu K (ed) Visible and near infrared light absorption in pigment epithelium and choroid. Excerpta Medica, Kyoto, pp 658–662Google Scholar
  31. 31.
    Iwami H, Pruessner J, Shiraki K et al (2014) Protective effect of a laser-induced sub-lethal temperature rise on RPE cells from oxidative stress. Exp Eye Res 124:37–47.  https://doi.org/10.1016/j.exer.2014.04.014 CrossRefPubMedGoogle Scholar
  32. 32.
    Rodanant N, Friberg TR, Cheng L et al (2002) Predictors of drusen reduction after subthreshold infrared (810 nm) diode laser macular grid photocoagulation for nonexudative age-related macular degeneration. Am J Ophthalmol 134(4):577–585.  https://doi.org/10.1016/S0002-9394(02)01691-4 CrossRefGoogle Scholar
  33. 33.
    Scorolli L, Corazza D, Morara M et al (2003) Argon laser vs. subthreshold infrared (810-nm) diode laser macular grid photocoagulation in nonexudative age-related macular degeneration. Can J Ophthalmol 38(6):489–495.  https://doi.org/10.1016/S0008-4182(03)80028-5 CrossRefGoogle Scholar
  34. 34.
    Friberg TR, Brennen PM, Freeman WR et al (2009) Prophylactic treatment of age-related macular degeneration report number 2: 810-nanometer laser to eyes with drusen: bilaterally eligible patients. Ophthalmic Surg Lasers Imaging 40(6):530–538.  https://doi.org/10.3928/15428877-20091030-01 CrossRefPubMedGoogle Scholar
  35. 35.
    Friberg TR, Musch DC, Lim JI et al (2006) Prophylactic treatment of age-related macular degeneration report number 1: 810-nanometer laser to eyes with drusen. Unilaterally eligible patients. Ophthalmology 113(4):612–622e.  https://doi.org/10.1016/j.ophtha.2005.10.066 CrossRefGoogle Scholar
  36. 36.
    Mojana F, Brar M, Cheng L et al (2011) Long-term SD-OCT/SLO imaging of neuroretina and retinal pigment epithelium after subthreshold infrared laser treatment of drusen. Retina 31(2):235–242.  https://doi.org/10.1097/IAE.0b013e3181ec80ad CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Roider J, Brinkmann R, Wirbelauer C et al (2000) Subthreshold (retinal pigment epithelium) photocoagulation in macular diseases: a pilot study. Br J Ophthalmol 84(1):40–47CrossRefGoogle Scholar
  38. 38.
    Framme C, Brinkmann R, Birngruber R et al (2002) Autofluorescence imaging after selective RPE laser treatment in macular diseases and clinical outcome: a pilot study. Br J Ophthalmol 86(10):1099–1106CrossRefGoogle Scholar
  39. 39.
    Framme C, Walter A, Prahs P et al (2009) Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT. Curr Eye Res 34(7):568–579.  https://doi.org/10.1080/02713680902964892 CrossRefPubMedGoogle Scholar
  40. 40.
    Guymer RH, Brassington KH, Dimitrov P et al (2014) Nanosecond-laser application in intermediate AMD: 12-month results of fundus appearance and macular function. Clin Experiment Ophthalmol 42(5):466–479.  https://doi.org/10.1111/ceo.12247 CrossRefPubMedGoogle Scholar
  41. 41.
    Berufsverband der Augenärzte Deutschlands e. V., Deutsche Ophthalmologische Gesellschaft, Retinologische Gesellschaft e. V. (2017) Stellungnahme des BVA, der DOG und der RG zur Lasertherapie von Drusen bei altersabhangiger Makuladegeneration (AMD) : Stand August 2017. Ophthalmologe 114:1008–1014CrossRefGoogle Scholar
  42. 42.
    Guymer RH, Wu Z, Hodgson LA, Caruso E, Brassington KH et al (2018) Subthreshold nanosecond laser intervention in age-related macular degeneration: the LEAD randomized controlled clinical trial. Ophthalmology.  https://doi.org/10.1016/j.oret.2016.12.001 CrossRefPubMedGoogle Scholar
  43. 43.
    Guymer RH, Brassington KH, Dimitrov P, Makeyeva G, Plunkett M et al (2014) Nanosecond-laser application in intermediate AMD: 12-month results of fundus appearance and macular function. Clin Exp Ophthalmol 42:466–479CrossRefGoogle Scholar
  44. 44.
    Jobling AI, Guymer RH, Vessey KA, Greferath U, Mills SA et al (2015) Nanosecond laser therapy reverses pathologic and molecular changes in age-related macular degeneration without retinal damage. FASEB J 29:696–710CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Professional Association of German Ophthalmologists (Berufsverband der Augenärzte Deutschlands e. V., BVA)
    • 1
  • German Society of Ophthalmology (Deutsche Ophthalmologische Gesellschaft, DOG)
    • 2
    Email author
  • German Retina Society (Retinologische Gesellschaft e. V., RG)
    • 3
  1. 1.Professional Association of German Ophthalmologists (Berufsverband der Augenärzte Deutschlands e. V.)DüsseldorfGermany
  2. 2.German Society of Ophthalmology (Deutsche Ophthalmologische Gesellschaft)MunichGermany
  3. 3.German Retina Society (Retinologische Gesellschaft e. V.)FreiburgGermany

Personalised recommendations