Advertisement

Der Ophthalmologe

, Volume 116, Issue 6, pp 518–523 | Cite as

Therapieoptionen bei progredienter Myopie im Kindesalter

  • L. Joachimsen
  • W. A. LagrèzeEmail author
Leitthema
  • 272 Downloads

Zusammenfassung

Weltweit nimmt die Inzidenz der Myopie zu. Die damit einhergehende Zunahme sekundärer und visusbedrohender Augenerkrankungen wird Patienten, Augenärzte, Optometristen, Optiker und die Gesundheitssysteme vor große Herausforderungen stellen. Da eine Myopie im Kindes- und Jugendalter beginnt, kann eine Progression nur in dieser Lebensphase beeinflusst werden. Dieser Beitrag gibt einen Überblick über optische und pharmakologische Therapieoptionen, die mittlere Effektgrößen von bis zu 50 % Progressionsminderung bei vergleichsweise günstigem Nebenwirkungsprofil aufweisen.

Schlüsselwörter

Progression Atropin Multifokale Kontaktlinsen Orthokeratologie Bifokale Brillengläser 

Treatment options for progressive myopia in childhood

Abstract

The incidence of myopia is increasing worldwide. The associated increase in secondary and vision-threatening eye diseases will pose major challenges to patients, ophthalmologists, optometrists, opticians and healthcare systems. Since myopia begins in childhood and adolescence, progression can only be influenced in this phase of life. This article gives an overview of optical and pharmacological treatment options, which show average effect sizes of up to 50% progression reduction with a comparatively favorable side effect profile.

Keywords

Progression Atropine Multifocal contact lenses Orthokeratology Bifocal spectacle lenses 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

W.A. Lagrèze weist auf folgende Beziehungen hin: Forschungsförderung BMBF, DFG, Referentenhonorar Alcon, Santhera, MedUpdate. Beratung Santhera, Allergan, Boehringer-Ingelheim, Merz. L. Joachimsen gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Fricke TR, Jong M, Naidoo KS, Sankaridurg P, Naduvilath TJ, Ho SM et al (2018) Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling. Br J Ophthalmol 102(7):855–862CrossRefGoogle Scholar
  2. 2.
    Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P et al (2016) Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123(5):1036–1042CrossRefGoogle Scholar
  3. 3.
    Williams KM, Bertelsen G, Cumberland P, Wolfram C, Verhoeven VJM, Anastasopoulos E et al (2015) Increasing prevalence of myopia in Europe and the impact of education. Ophthalmology 122(7):1489–1497CrossRefGoogle Scholar
  4. 4.
    Wesemann W (2018) Analysis of spectacle lens prescriptions shows no increase of myopia in Germany from 2000 to 2015. Ophthalmologe 115(5):409–417CrossRefGoogle Scholar
  5. 5.
    Flitcroft DI (2012) The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res 31(6):622–660CrossRefGoogle Scholar
  6. 6.
    Trier K, Munk Ribel-Madsen S, Cui D, Brøgger Christensen S (2008) Systemic 7‑methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study. J Ocul Biol Dis Infor 1(2–4):85–93CrossRefGoogle Scholar
  7. 7.
    Jensen H (1991) Myopia progression in young school children. A prospective study of myopia progression and the effect of a trial with bifocal lenses and beta blocker eye drops. Acta Ophthalmol 200:1–79Google Scholar
  8. 8.
    Chua W‑H, Balakrishnan V, Chan Y‑H, Tong L, Ling Y, Quah B‑L et al (2006) Atropine for the treatment of childhood myopia. Ophthalmology 113(12):2285–2291CrossRefGoogle Scholar
  9. 9.
    Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A et al (2012) Atropine for the treatment of childhood myopia: safety and efficacy of 0.5 %, 0.1 %, and 0.01 % doses (Atropine for the Treatment of Myopia 2). Ophthalmology 119(2):347–354CrossRefGoogle Scholar
  10. 10.
    Chia A, Chua W‑H, Wen L, Fong A, Goon YY, Tan D (2014) Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01 %, 0.1 % and 0.5. Am J Ophthalmol 157(2):451–457.e1CrossRefGoogle Scholar
  11. 11.
    Yam JC, Jiang Y, Tang SM, Law AKP, Chan JJ, Wong E et al (2018) Low-concentration atropine for myopia progression (LAMP) study: a randomized, double-blinded, placebo-controlled trial of 0.05 %, 0.025 %, and 0.01 % atropine eye drops in myopia control. Ophthalmology 126:113.  https://doi.org/10.1016/j.ophtha.2018.05.029 CrossRefPubMedGoogle Scholar
  12. 12.
    Li S‑M, Wu S‑S, Kang M‑T, Liu Y, Jia S‑M, Li S‑Y et al (2014) Atropine slows myopia progression more in Asian than white children by meta-analysis. Optom Vis Sci 91(3):342–350PubMedGoogle Scholar
  13. 13.
    Schittkowski MP, Sturm V (2018) Atropine for the prevention of progression in myopia—data, side effects, practical guidelines. Klin Monbl Augenheilkd 235(4):385–391CrossRefGoogle Scholar
  14. 14.
    Huang J, Wen D, Wang Q, McAlinden C, Flitcroft I, Chen H et al (2016) Efficacy comparison of 16 interventions for myopia control in children: a network Meta-analysis. Ophthalmology 123(4):697–708CrossRefGoogle Scholar
  15. 15.
    Polling JR, Eijkemans MJ, Esser J, Gilles U, Kolling GH, Schulz E et al (2009) A randomised comparison of bilateral recession versus unilateral recession-resection as surgery for infantile esotropia. Br J Ophthalmol 93(7):954–957CrossRefGoogle Scholar
  16. 16.
    Diaz-Llopis M, Pinazo-Durán MD (2018) Superdiluted atropine at 0.01 % reduces progression in children and adolescents. A 5 year study of safety and effectiveness. Arch Soc Esp Oftalmol.  https://doi.org/10.1016/j.oftale.2018.02.006 CrossRefPubMedGoogle Scholar
  17. 17.
    Wu P‑C, Chuang M‑N, Choi J, Chen H, Wu G, Ohno-Matsui K et al (2018) Update in myopia and treatment strategy of atropine use in myopia control. Eye (Lond) 33(1):3–13CrossRefGoogle Scholar
  18. 18.
    Wolffsohn JS, Calossi A, Cho P, Gifford K, Jones L, Li M et al (2016) Global trends in myopia management attitudes and strategies in clinical practice. Cont Lens Anterior Eye 39(2):106–116CrossRefGoogle Scholar
  19. 19.
    Gong Q, Janowski M, Luo M, Wei H, Chen B, Yang G et al (2017) Efficacy and adverse effects of atropine in childhood myopia: a meta-analysis. Jama Ophthalmol 135(6):624–630CrossRefGoogle Scholar
  20. 20.
    Cooper J, Eisenberg N, Schulman E, Wang FM (2013) Maximum atropine dose without clinical signs or symptoms. Optom Vis Sci 90(12):1467–1472CrossRefGoogle Scholar
  21. 21.
    Loughman J, Flitcroft DI (2016) The acceptability and visual impact of 0.01 % atropine in a Caucasian population. Br J Ophthalmol 100(11):1525–1529CrossRefGoogle Scholar
  22. 22.
    Nishiyama Y, Moriyama M, Fukamachi M, Uchida A, Miyaushiro H, Kurata A et al (2015) Side Effects of Low Dose Atropine. Nippon Ganka Gakkai Zasshi 119(11):812–816PubMedGoogle Scholar
  23. 23.
    German EJ, Wood D, Hurst MA (1999) Ocular effects of antimuscarinic compounds: is clinical effect determined by binding affinity for muscarinic receptors or melanin pigment? J Ocul Pharmacol Ther 15(3):257–269CrossRefGoogle Scholar
  24. 24.
    Chia A, Lu Q‑S, Tan D (2015) Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01 % Eyedrops. Ophthalmology 123(2):391–399CrossRefGoogle Scholar
  25. 25.
    Wu P‑C, Yang Y‑H, Fang P‑C (2011) The long-term results of using low-concentration atropine eye drops for controlling myopia progression in schoolchildren. J Ocul Pharmacol Ther 27(5):461–466CrossRefGoogle Scholar
  26. 26.
    Sun Y‑Y, Li S‑M, Li S‑Y, Kang M‑T, Liu L‑R, Meng B et al (2017) Effect of uncorrection versus full correction on myopia progression in 12-year-old children. Graefes Arch Clin Exp Ophthalmol 255(1):189–195CrossRefGoogle Scholar
  27. 27.
    Adler D, Millodot M (2006) The possible effect of undercorrection on myopic progression in children. Clin Exp Optom 89(5):315–321CrossRefGoogle Scholar
  28. 28.
    Chung K, Mohidin N, O’Leary DJ (2002) Undercorrection of myopia enhances rather than inhibits myopia progression. Vision Res 42(22):2555–2559CrossRefGoogle Scholar
  29. 29.
    Walline JJ, Lindsley K, Vedula SS, Cotter SA, Mutti DO, Twelker JD (2011) Interventions to slow progression of myopia in children. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD004916.pub3 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gwiazda J, Hyman L, Hussein M, Everett D, Norton TT, Kurtz D et al (2003) A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest Ophthalmol Vis Sci 44(4):1492–1500CrossRefGoogle Scholar
  31. 31.
    Li S‑M, Ji Y‑Z, Wu S‑S, Zhan S‑Y, Wang B, Liu L‑R et al (2011) Multifocal versus single vision lenses intervention to slow progression of myopia in school-age children: a meta-analysis. Surv Ophthalmol 56(5):451–460CrossRefGoogle Scholar
  32. 32.
    Lam CSY, Tang WC, Tse DY-Y, Tang YY, To CH (2014) Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial. Br J Ophthalmol 98(1):40–45CrossRefGoogle Scholar
  33. 33.
    Aller TA, Liu M, Wildsoet CF (2016) Myopia control with bifocal contact lenses: a randomized clinical trial. Optom Vis Sci 93(4):344–352CrossRefGoogle Scholar
  34. 34.
    Bullimore MA (2017) The safety of soft contact lenses in children. Optom Vis Sci 94(6):638–646CrossRefGoogle Scholar
  35. 35.
    Cho P, Cheung S‑W (2017) Protective role of orthokeratology in reducing risk of rapid axial elongation: a reanalysis of data from the ROMIO and TO-SEE studies. Invest Ophthalmol Vis Sci 58(3):1411–1416CrossRefGoogle Scholar
  36. 36.
    Lin H‑J, Wan L, Tsai F‑J, Tsai Y‑Y, Chen L‑A, Tsai AL et al (2014) Overnight orthokeratology is comparable with atropine in controlling myopia. BMC Ophthalmol 14:40CrossRefGoogle Scholar
  37. 37.
    Chen C, Cheung SW, Cho P (2013) Myopia control using toric orthokeratology (TO-SEE study). Invest Ophthalmol Vis Sci 54(10):6510–6517CrossRefGoogle Scholar
  38. 38.
    Lipson MJ, Brooks MM, Koffler BH (2018) The role of orthokeratology in myopia control: a review. Eye Contact Lens 44(4):224–230CrossRefGoogle Scholar
  39. 39.
    Charm J, Cho P (2013) High myopia-partial reduction ortho-k: a 2-year randomized study. Optom Vis Sci 90(6):530–539CrossRefGoogle Scholar
  40. 40.
    Cho P, Cheung SW, Edwards M (2005) The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res 30(1):71–80CrossRefGoogle Scholar
  41. 41.
    Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T (2012) Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci 53(7):3913–3919CrossRefGoogle Scholar
  42. 42.
    Kakita T, Hiraoka T, Oshika T (2011) Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci 52(5):2170–2174CrossRefGoogle Scholar
  43. 43.
    Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutiérrez-Ortega R (2012) Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Invest Ophthalmol Vis Sci 53(8):5060–5065CrossRefGoogle Scholar
  44. 44.
    Walline JJ, Jones LA, Sinnott LT (2009) Corneal reshaping and myopia progression. Br J Ophthalmol 93(9):1181–1185CrossRefGoogle Scholar
  45. 45.
    Tsukiyama J, Miyamoto Y, Higaki S, Fukuda M, Shimomura Y (2008) Changes in the anterior and posterior radii of the corneal curvature and anterior chamber depth by orthokeratology. Eye Contact Lens 34(1):17–20CrossRefGoogle Scholar
  46. 46.
    Cheung S‑W, Cho P (2013) Validity of axial length measurements for monitoring myopic progression in orthokeratology. Invest Ophthalmol Vis Sci 54(3):1613–1615CrossRefGoogle Scholar
  47. 47.
    Cho P, Cheung SW (2017) Discontinuation of orthokeratology on eyeball elongation (DOEE). Cont Lens Anterior Eye 40(2):82–87CrossRefGoogle Scholar
  48. 48.
    Watt KG, Swarbrick HA (2007) Trends in microbial keratitis associated with orthokeratology. Eye Contact Lens 33(6 Pt 2):373–377 (discussion 382)CrossRefGoogle Scholar
  49. 49.
    Li S‑M, Kang M‑T, Wu S‑S, Liu L‑R, Li H, Chen Z et al (2016) Efficacy, safety and acceptability of orthokeratology on slowing axial elongation in myopic children by meta-analysis. Curr Eye Res 41(5):600–608CrossRefGoogle Scholar
  50. 50.
    Bullimore MA, Sinnott LT, Jones-Jordan LA (2013) The risk of microbial keratitis with overnight corneal reshaping lenses. Optom Vis Sci 90(9):937–944CrossRefGoogle Scholar
  51. 51.
    Liu YM, Xie P (2016) The safety of orthokeratology—a systematic review. Eye Contact Lens 42(1):35–42CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Augenheilkunde, Medizinische FakultätUniversitätsklinikum FreiburgFreiburgDeutschland

Personalised recommendations