Advertisement

Stellungnahme der DOG, der RG und des BVA zur Therapie des diabetischen Makulaödems

Stand August 2019
  • Deutsche Ophthalmologische Gesellschaft (DOG)Email author
  • Retinologische Gesellschaft e. V. (RG)
  • Berufsverband der Augenärzte Deutschlands e. V. (BVA)
Leitlinien, Stellungnahmen und Empfehlungen

Kernaussagen

Empfehlungen/Statements

1.1 Indikationsstellung

  • Zur Indikationsstellung der Therapie eines diabetischen Makulaödems sollen mindestens folgende Untersuchungen durchgeführt werden: Bestimmung des bestkorrigierten Visus, Spaltlampenuntersuchung der vorderen Augenabschnitte (u. a. auf Rubeosis iridis); stereoskopische Untersuchung der gesamten Netzhaut in Mydriasis, Fluoreszeinangiographie, OCT.

    Empfehlungsgrad: ⇑⇑

  • Die Behandlung eines diabetischen Makulaödems mit intravitrealen Medikamenten soll nur dann erfolgen, wenn aufgrund des Befundes eine positive Beeinflussung des funktionellen (und morphologischen) Befundes erwartet werden kann.

    Empfehlungsgrad: ⇑⇑

2.1 Therapiewahl: Diabetisches Makulaödem mit fovealer Beteiligung

  • Besteht eine foveale Beteiligung eines diabetischen Makulaödems, kommen grundsätzlich verschiedene Therapiemodalitäten in Betracht, über die der Patient bezüglich der jeweiligen Visusprognose, Behandlungsfrequenzen und Komplikationshäufigkeiten informiert...

Statement of the German Ophthalmological Society, the Retinological Society and the Professional Association of Ophthalmologists in Germany on treatment of diabetic macular edema

Situation August 2019

Notes

Redaktionskomitee.

Prof. Dr. med. Focke Ziemssen, Department für Augenheilkunde, Eberhard Karl Universität Tübingen (federführend)

Dr. med. Georg Spital, Augenzentrum am St. Franziskus Hospital Münster (federführend)

Priv.-Doz. Dr. med. Klaus Lemmen, Augenarztpraxis Düsseldorf

Prof. Dr. med. Gabriele E. Lang, Universitätsaugenklinik Ulm

Prof. Dr. med. Hansjürgen Agostini, Universitäts-Augenklink Freiburg

Prof. Dr. med. Bernd Bertram, Augenarztpraxis Aachen

Einhaltung ethischer Richtlinien

Interessenkonflikt

Siehe Tab. 1 im Anhang

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Fenwick EK, Xie J, Ratcliffe J, Pesudovs K, Finger RP, Wong TY et al (2012) The impact of diabetic retinopathy and diabetic macular edema on health-related quality of life in type 1 and type 2 diabetes. Invest Ophthalmol Vis Sci 53(2):677–684.  https://doi.org/10.1167/iovs.11-8992 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pelzek C, Lim JI (2002) Diabetic macular edema: review and update. Ophthalmol Clin North Am 15(4):555–563PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Haritoglou C, Kernt M, Wolf A (2015) Diabetic maculopathy. Ophthalmologe 112(10):871–883.  https://doi.org/10.1007/s00347-015-0127-2 (quiz 84-6)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tan GS, Cheung N, Simo R, Cheung GC, Wong TY (2017) Diabetic macular oedema. Lancet Diabetes Endocrinol 5(2):143–155.  https://doi.org/10.1016/S2213-8587(16)30052-3 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Spital G (2018) Treatment of diabetic macular edema. Diabetologe 14(8):577–589.  https://doi.org/10.1007/s11428-018-0404-1 CrossRefGoogle Scholar
  6. 6.
    Claessen H, Kvitkina T, Narres M, Trautner C, Zollner I, Bertram B et al (2018) Markedly decreasing incidence of blindness in people with and without diabetes in southern Germany. Diabetes Care 41(3):478–484.  https://doi.org/10.2337/dc17-2031 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kahm K, Laxy M, Schneider U, Rogowski WH, Lhachimi SK, Holle R (2018) Health care costs associated with incident complications in patients with type 2 diabetes in Germany. Diabetes Care.  https://doi.org/10.2337/dc17-1763 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kreft D, McGuinness MB, Doblhammer G, Finger RP (2018) Diabetic retinopathy screening in incident diabetes mellitus type 2 in Germany between 2004 and 2013—a prospective cohort study based on health claims data. PLoS ONE 13(4):e195426.  https://doi.org/10.1371/journal.pone.0195426 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fullerton B, Erler A, Pohlmann B, Gerlach FM (2012) Predictors of dropout in the German disease management program for type 2 diabetes. BMC Health Serv Res 12:8.  https://doi.org/10.1186/1472-6963-12-8 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    BARMER GEK (2017) Qualitätssicherungsbericht 2017 Besser-Leben-Program Diabetes mellitus Typ 1Google Scholar
  11. 11.
    Kassenärztliche Bundesvereinigung (KBV) Disease-Management-Programm Diabetes mellitus Typ 2 – Qualitätszielerreichung 2016. In: Indikationsspezifische Berichte für die Gemeinsamen Einrichtungen bzw. Qualitätsberichte aus 15 Kassenärztlichen Vereinigungen. https://www.kbv.de/html/dmp.php. Zugegriffen: 31.05.2019
  12. 12.
    Groos SK, Macare C, Weber A, Hagen B (2018) Qualitätssicherungsbericht 2017 Disease Management Programme NordrheinGoogle Scholar
  13. 13.
    Lindenmeyer A, Sturt JA, Hipwell A, Stratton IM, Al-Athamneh N, Gadsby R et al (2014) Influence of primary care practices on patients’ uptake of diabetic retinopathy screening: a qualitative case study. Br J Gen Pract 64(625):e484–e492.  https://doi.org/10.3399/bjgp14X680965 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Brown DM, Schmidt-Erfurth U, Do DV, Holz FG, Boyer DS, Midena E et al (2015) Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology 122(10):2044–2052.  https://doi.org/10.1016/j.ophtha.2015.06.017 CrossRefGoogle Scholar
  15. 15.
    Mitchell P, Bandello F, Schmidt-Erfurth U, Lang GE, Massin P, Schlingemann RO et al (2011) The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 118(4):615–625.  https://doi.org/10.1016/j.ophtha.2011.01.031 CrossRefGoogle Scholar
  16. 16.
    Boyer DS, Yoon YH, Belfort R Jr., Bandello F, Maturi RK, Augustin AJ et al (2014) Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology 121(10):1904–1914.  https://doi.org/10.1016/j.ophtha.2014.04.024 CrossRefGoogle Scholar
  17. 17.
    Campochiaro PA, Brown DM, Pearson A, Chen S, Boyer D, Ruiz-Moreno J et al (2012) Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology 119(10):2125–2132.  https://doi.org/10.1016/j.ophtha.2012.04.030 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Heng LZ, Sivaprasad S, Crosby-Nwaobi R, Saihan Z, Karampelas M, Bunce C et al (2016) A prospective randomised controlled clinical trial comparing a combination of repeated intravitreal Ozurdex and macular laser therapy versus macular laser only in centre-involving diabetic macular oedema (OZLASE study). Br J Ophthalmol 100(6):802–807.  https://doi.org/10.1136/bjophthalmol-2015-307136 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ziemssen F, Feltgen N, Holz FG, Guthoff R, Ringwald A, Bertelmann T et al (2017) Demographics of patients receiving Intravitreal anti-VEGF treatment in real-world practice: healthcare research data versus randomized controlled trials. BMC Ophthalmol 17(1):7.  https://doi.org/10.1186/s12886-017-0401-y CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hautala N, Aikkila R, Korpelainen J, Keskitalo A, Kurikka A, Falck A et al (2014) Marked reductions in visual impairment due to diabetic retinopathy achieved by efficient screening and timely treatment. Acta Ophthalmol 92(6):582–587.  https://doi.org/10.1111/aos.12278 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Davies R, Roderick P, Canning C, Brailsford S (2002) The evaluation of screening policies for diabetic retinopathy using simulation. Diabet Med 19(9):762–770PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Bragge P, Gruen RL, Chau M, Forbes A, Taylor HR (2011) Screening for presence or absence of diabetic retinopathy: a meta-analysis. Arch Ophthalmol 129(4):435–444.  https://doi.org/10.1001/archophthalmol.2010.319 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Happich M, John J, Stamenitis S, Clouth J, Polnau D (2008) The quality of life and economic burden of neuropathy in diabetic patients in Germany in 2002—results from the Diabetic Microvascular Complications (DIMICO) study. Diabetes Res Clin Pract 81(2):223–230.  https://doi.org/10.1016/j.diabres.2008.03.019 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cavan D, Makaroff LE, da Rocha Fernandes J, Karuranga S, Sylvanowicz M, Conlon J et al (2018) Global perspectives on the provision of diabetic retinopathy screening and treatment: survey of health care professionals in 41 countries. Diabetes Res Clin Pract 143:170–178.  https://doi.org/10.1016/j.diabres.2018.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rock D, Schnellbacher E, Fritsche A, Ziemssen T, Ziemssen F, Marahrens L (2018) Knowledge of patients and health professionals about diabetes-related eye diseases (risk factors, screening, treatment). Diabetol Stoffwechs 13(3):263–269.  https://doi.org/10.1055/a-0578-8112 CrossRefGoogle Scholar
  26. 26.
    (AWMF) BBAdWMF. Nationale VersorgungsLeitlinie Prävention und Therapie von Netzhautkomplikationen bei Diabetes – Langfassung. 2015. www.netzhautkomplikationen.versorgungsleitlinien.de. Zugegriffen: 30.12.2019.
  27. 27.
    Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564.  https://doi.org/10.2337/dc11-1909 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Klein R, Klein BE, Moss SE, Davis MD, DeMets DL (1984) The Wisconsin epidemiologic study of diabetic retinopathy. IV. Diabetic macular edema. Ophthalmology 91(12):1464–1474PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G et al (2018) Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 61(12):2461–2498.  https://doi.org/10.1007/s00125-018-4729-5 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sabanayagam C, Banu R, Chee ML, Lee R, Wang YX, Tan G et al (2018) Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol.  https://doi.org/10.1016/S2213-8587(18)30128-1 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Goffrier B, Schulz M, Bätzing-Feigenbaum J, Holstiege J (2017) Administrative Prävalenzen und Inzidenzen des Diabetes mellitus von 2009 bis 2015. Versorgungsatlas. In: (Zi) ZdkVGoogle Scholar
  32. 32.
    Gross JG, Glassman AR, Liu D, Sun JK, Antoszyk AN, Baker CW et al (2018) Five-year outcomes of panretinal photocoagulation vs Intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA Ophthalmol 136(10):1138–1148.  https://doi.org/10.1001/jamaophthalmol.2018.3255 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bressler SB, Beaulieu WT, Glassman AR, Gross JG, Melia M, Chen E et al (2018) Panretinal photocoagulation versus ranibizumab for proliferative diabetic retinopathy: factors associated with vision and edema outcomes. Ophthalmology 125(11):1776–1783.  https://doi.org/10.1016/j.ophtha.2018.04.039 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sivaprasad S, Prevost AT, Bainbridge J, Edwards RT, Hopkins D, Kelly J et al (2015) Clinical efficacy and mechanistic evaluation of aflibercept for proliferative diabetic retinopathy (acronym CLARITY): a multicentre phase IIb randomised active-controlled clinical trial. Bmj Open 5(9):e8405.  https://doi.org/10.1136/bmjopen-2015-008405 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Virgili G, Parravano M, Evans JR, Gordon I, Lucenteforte E (2018) Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD007419.pub6 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jorge EC, Jorge EN, Botelho M, Farat JG, Virgili G, El Dib R (2018) Monotherapy laser photocoagulation for diabetic macular oedema. Cochrane Database Syst Rev 10:CD10859.  https://doi.org/10.1002/14651858.CD010859.pub2 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mehta H, Hennings C, Gillies MC, Nguyen V, Campain A, Fraser-Bell S (2018) Anti-vascular endothelial growth factor combined with intravitreal steroids for diabetic macular oedema. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD011599.pub2 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wells JA, Glassman AR, Ayala AR, Jampol LM, Bressler NM, Bressler SB et al (2016) Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology 123(6):1351–1359.  https://doi.org/10.1016/j.ophtha.2016.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Maturi RK, Glassman AR, Liu D, Beck RW, Bhavsar AR, Bressler NM et al (2018) Effect of adding dexamethasone to continued ranibizumab treatment in patients with persistent diabetic macular edema: a DRCR network phase 2 randomized clinical trial. Jama Ophthalmol 136(1):29–38.  https://doi.org/10.1001/jamaophthalmol.2017.4914 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Callanan DG, Loewenstein A, Patel SS, Massin P, Corcóstegui B, Li X‑Y et al (2017) A multicenter, 12-month randomized study comparing dexamethasone intravitreal implant with ranibizumab in patients with diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 255(3):463–473PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Weiss M, Sim DA, Herold T, Schumann RG, Liegl R, Kern C et al (2018) Compliance and adherence of patients with diabetic macular edema to Intravitreal anti-vascular endothelial growth factor therapy in daily practice. Retina 38(12):2293–2300.  https://doi.org/10.1097/IAE.0000000000001892 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ehlken C, Helms M, Bohringer D, Agostini HT, Stahl A (2018) Association of treatment adherence with real-life VA outcomes in AMD, DME, and BRVO patients. Clin Ophthalmol 12:13–20.  https://doi.org/10.2147/OPTH.S151611 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Paschke R, Wuthe FG, Kuhn K, Jochmann C, Wiedemann P (2010) Comparison of risk factors and guideline oriented prevention and therapy of diabetic retinopathy between type 2 diabetes patients undergoing laser therapy and type 2 diabetes outpatients. Med Klin 105(11):772–778.  https://doi.org/10.1007/s00063-010-1131-6 CrossRefGoogle Scholar
  44. 44.
    Brown DM, Nguyen QD, Marcus DM, Boyer DS, Patel S, Feiner L et al (2013) Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology 120(10):2013–2022.  https://doi.org/10.1016/j.ophtha.2013.02.034 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ehlers JP, Jiang AC, Boss JD, Hu M, Figueiredo N, Babiuch A et al (2019) Quantitative ultra-widefield angiography and diabetic retinopathy severity: an assessment of panretinal leakage index, ischemic index and microaneurysm count. Ophthalmology.  https://doi.org/10.1016/j.ophtha.2019.05.034 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kim EJ, Lin WV, Rodriguez SM, Chen A, Loya A, Weng CY (2019) Treatment of diabetic macular edema. Curr Diab Rep 19(9):68.  https://doi.org/10.1007/s11892-019-1188-4 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gall MA, Rossing P, Skott P, Damsbo P, Vaag A, Bech K et al (1991) Prevalence of micro- and macroalbuminuria, arterial hypertension, retinopathy and large vessel disease in European type 2 (non-insulin-dependent) diabetic patients. Diabetologia 34(9):655–661PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Hammes HP, Welp R, Kempe HP, Wagner C, Siegel E, Holl RW et al (2015) Risk factors for retinopathy and DME in type 2 diabetes-results from the German/Austrian DPV database. PLoS ONE 10(7):e132492.  https://doi.org/10.1371/journal.pone.0132492 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hemmingsen B, Lund SS, Gluud C, Vaag A, Almdal TP, Hemmingsen C et al (2013) Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD008143.pub3 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366(13):1227–1239.  https://doi.org/10.1056/NEJMra1005073 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hirsch IB, Brownlee M (2010) Beyond hemoglobin A1c—need for additional markers of risk for diabetic microvascular complications. JAMA 303(22):2291–2292.  https://doi.org/10.1001/jama.2010.785 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kim YJ, Shin S, Han DJ, Kim YH, Lee JY, Yoon YH et al (2018) Long-term effects of pancreas transplantation on diabetic retinopathy and incidence and predictive risk factors for early worsening. Transplantation 102(1):e30–e38.  https://doi.org/10.1097/TP.0000000000001958 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bain SC, Klufas MA, Ho A, Matthews DR (2018) Worsening of diabetic retinopathy with rapid improvement in systemic glucose control: a review. Diabetes Obes Metab.  https://doi.org/10.1111/dom.13538 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Feldman-Billard S, Larger E, Massin P (2018) Standards for screeningand surveillance of ocular complications in people with diabetes SFDsg. Early worsening of diabetic retinopathy after rapid improvement of blood glucose control in patients with diabetes. Diabetes Metab 44(1):4–14.  https://doi.org/10.1016/j.diabet.2017.10.014 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lim SW, van Wijngaarden P, Harper CA, Al-Qureshi SH (2018) Early worsening of diabetic retinopathy due to intensive glycaemic control. Clin Exp Ophthalmol.  https://doi.org/10.1111/ceo.13393 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Diabetic Retinopathy Clinical Research Network, Brucker AJ, Qin H, Antoszyk AN, Beck RW, Bressler NM et al (2009) Observational study of the development of diabetic macular edema following panretinal (scatter) photocoagulation given in 1 or 4 sittings. Arch Ophthalmol 127(2):132–140.  https://doi.org/10.1001/archophthalmol.2008.565 CrossRefPubMedCentralGoogle Scholar
  57. 57.
    Figueira J, Fletcher E, Massin P, Silva R, Bandello F, Midena E et al (2018) Ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk proliferative diabetic retinopathy (PROTEUS study). Ophthalmology 125(5):691–700.  https://doi.org/10.1016/j.ophtha.2017.12.008 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Oh JH, Kim SW, Kwon SS, Oh J, Huh K (2015) The change of macular thickness following single-session pattern scan laser panretinal photocoagulation for diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 253(1):57–63.  https://doi.org/10.1007/s00417-014-2663-x CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bressler SB, Beaulieu WT, Glassman AR, Gross JG, Jampol LM, Melia M et al (2017) Factors associated with worsening proliferative diabetic retinopathy in eyes treated with panretinal photocoagulation or ranibizumab. Ophthalmology 124(4):431–439.  https://doi.org/10.1016/j.ophtha.2016.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhu B, Ma Y, Lin S, Zou H (2017) Vision-related quality of life and visual outcomes from cataract surgery in patients with vision-threatening diabetic retinopathy: a prospective observational study. Health Qual Life Outcomes 15(1):175.  https://doi.org/10.1186/s12955-017-0751-4 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Brazier J, Muston D, Konwea H, Power GS, Barzey V, Lloyd A et al (2017) Evaluating the relationship between visual acuity and utilities in patients with diabetic macular edema enrolled in Intravitreal aflibercept studies. Invest Ophthalmol Vis Sci 58(11):4818–4825.  https://doi.org/10.1167/iovs.17-21945 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Trento M, Durando O, Lavecchia S, Charrier L, Cavallo F, Costa MA et al (2017) Vision related quality of life in patients with type 2 diabetes in the EUROCONDOR trial. Endocrine 57(1):83–88.  https://doi.org/10.1007/s12020-016-1097-0 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Trento M, Passera P, Trevisan M, Schellino F, Sitia E, Albani S et al (2013) Quality of life, impaired vision and social role in people with diabetes: a multicenter observational study. Acta Diabetol 50(6):873–877.  https://doi.org/10.1007/s00592-013-0470-1 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Man RE, Fenwick EK, Sabanayagam C, Li LJ, Tey CS, Soon HJ et al (2016) Differential impact of unilateral and bilateral classifications of diabetic retinopathy and diabetic macular edema on vision-related quality of life. Invest Ophthalmol Vis Sci 57(11):4655–4660.  https://doi.org/10.1167/iovs.16-20165 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hodgson N, Wu F, Zhu J, Wang W, Ferreyra H, Zhang K et al (2016) Economic and quality of life benefits of anti-VEGF therapy. Mol Pharm 13(9):2877–2880.  https://doi.org/10.1021/acs.molpharmaceut.5b00775 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Willis JR, Doan QV, Gleeson M, Haskova Z, Ramulu P, Morse L et al (2017) Vision-related functional burden of diabetic retinopathy across severity levels in the United States. JAMA Ophthalmol 135(9):926–932.  https://doi.org/10.1001/jamaophthalmol.2017.2553 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lachenmayr B (2013) Recommendations for assessment of twilight vision and glare sensitivity for safe driving. Ophthalmologe 110(12):1160–1162.  https://doi.org/10.1007/s00347-013-2997-5 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Seeger R, Lehmann R (2011) Driving ability and fitness to drive in people with diabetes mellitus. Ther Umsch 68(5):249–252.  https://doi.org/10.1024/0040-5930/a000159 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Mackie SW, Webb LA, Hutchison BM, Hammer HM, Barrie T, Walsh G (1995) How much blame can be placed on laser photocoagulation for failure to attain driving standards? Eye 9(Pt 4):517–525.  https://doi.org/10.1038/eye.1995.118 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Stiefelhagen P (2016) MMW Fortschr Med 158(21–22):26.  https://doi.org/10.1007/s15006-016-9078-z CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chatziralli I, Santarelli M, Patrao N, Nicholson L, Zola M, Rajendram R et al (2017) Identification of time point to best define „sub-optimal response“ following intravitreal ranibizumab therapy for diabetic macular edema based on real-life data. Eye 31(11):1594–1599.  https://doi.org/10.1038/eye.2017.111 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Bressler NM, Varma R, Mitchell P, Suner IJ, Dolan C, Ward J et al (2016) Effect of ranibizumab on the decision to drive and vision function relevant to driving in patients with diabetic macular edema: report from RESTORE, RIDE, and RISE trials. JAMA Ophthalmol 134(2):160–166.  https://doi.org/10.1001/jamaophthalmol.2015.4636 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Novartis (2018) Fachinformation Lucentis. EU Zulassungsnummer EU/1/06/374/001: Rote Liste Service GmbHGoogle Scholar
  74. 74.
    Bayer (2018) Fachinformation Eylea. EU Zulassungsnummer EU/1/12/797/002: Rote Liste Service GmbHGoogle Scholar
  75. 75.
    Jeganathan VS, Wang JJ, Wong TY (2008) Ocular associations of diabetes other than diabetic retinopathy. Diabetes Care 31(9):1905–1912.  https://doi.org/10.2337/dc08-0342 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Herse PR (1988) A review of manifestations of diabetes mellitus in the anterior eye and cornea. Am J Optom Physiol Opt 65(3):224–230PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Ansari AS, de Lusignan S, Hinton W, Munro N, McGovern A (2017) The association between diabetes, level of glycaemic control and eye infection: cohort database study. Prim Care Diabetes 11(5):421–429.  https://doi.org/10.1016/j.pcd.2017.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Goebbels M (2000) Tear secretion and tear film function in insulin dependent diabetics. Br J Ophthalmol 84(1):19–21PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Grus FH, Sabuncuo P, Dick HB, Augustin AJ, Pfeiffer N (2002) Changes in the tear proteins of diabetic patients. BMC Ophthalmol 2:4PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Tumosa N (2008) Eye disease and the older diabetic. Clin Geriatr Med 24(3):515–527.  https://doi.org/10.1016/j.cger.2008.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Centers for Disease C, Prevention (2004) Prevalence of visual impairment and selected eye diseases among persons aged 〉/=50 years with and without diabetes—United States, 2002. MMWR Morb Mortal Wkly Rep 53(45):1069–1071Google Scholar
  82. 82.
    Klemm M, Gesser C (2014) The relevance of diabetes for patients with glaucoma. Klin Monbl Augenheilkd 231(2):116–120.  https://doi.org/10.1055/s-0033-1360143 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Zhou M, Wang W, Huang W, Zhang X (2014) Diabetes mellitus as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. PLoS One 9(8):e102972.  https://doi.org/10.1371/journal.pone.0102972 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Federführendes Redaktionsteam, Ziemssen F, Helbig H, Lemmen KD, Spital G, Bertram B et al (2013) Statement of the German Ophthalmological Society, the Retina Society and the Professional Association of German Ophthalmologists: treatment of diabetic maculopathy (April 2013). Klin Monbl Augenheilkd 230(6):614–628.  https://doi.org/10.1055/s-0032-1328663 CrossRefGoogle Scholar
  85. 85.
    Goebel W, Franke R (2006) Retinal thickness in diabetic retinopathy: comparison of optical coherence tomography, the retinal thickness analyzer, and fundus photography. Retina 26(1):49–57PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Hirano T, Iesato Y, Toriyama Y, Imai A, Murata T (2014) Detection of fovea-threatening diabetic macular edema by optical coherence tomography to maintain good vision by prophylactic treatment. Ophthalmic Res 52(2):65–73.  https://doi.org/10.1159/000362372 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Diabetic Retinopathy Clinical Research Network, Bressler NM, Miller KM, Beck RW, Bressler SB, Glassman AR et al (2012) Observational study of subclinical diabetic macular edema. Eye 26(6):833–840.  https://doi.org/10.1038/eye.2012.53 CrossRefPubMedCentralGoogle Scholar
  88. 88.
    Leal J, Luengo-Fernandez R, Stratton IM, Dale A, Ivanova K, Scanlon PH (2018) Cost-effectiveness of digital surveillance clinics with optical coherence tomography versus hospital eye service follow-up for patients with screen-positive maculopathy. Eye.  https://doi.org/10.1038/s41433-018-0297-7 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Heng LZ, Pefianaki M, Hykin P, Patel PJ (2015) Interobserver agreement in detecting spectral-domain optical coherence tomography features of diabetic macular edema. PLoS ONE 10(5):e126557PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Virgili G, Menchini F, Dimastrogiovanni AF, Rapizzi E, Menchini U, Bandello F et al (2007) Optical coherence tomography versus stereoscopic fundus photography or biomicroscopy for diagnosing diabetic macular edema: a systematic review. Invest Ophthalmol Vis Sci 48(11):4963–4973.  https://doi.org/10.1167/iovs.06-1472 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Health Quality Ontario (2009) Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis. Ont Health Technol Assess Ser 9(13):1–22Google Scholar
  92. 92.
    Das R, Spence G, Hogg RE, Stevenson M, Chakravarthy U (2018) Disorganization of inner retina and outer retinal morphology in diabetic macular edema. JAMA Ophthalmol 136(2):202–208.  https://doi.org/10.1001/jamaophthalmol.2017.6256 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Sheu S‑J, Lee Y‑Y, Horng Y‑H, Lin H‑S, Lai W‑Y, Tsen C‑L (2018) Characteristics of diabetic macular edema on optical coherence tomography may change over time or after treatment. Clin Ophthalmol 12:1887PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Bonfiglio V, Reibaldi M, Pizzo A, Russo A, Macchi I, Faro G et al (2019) Dexamethasone for unresponsive diabetic macular oedema: optical coherence tomography biomarkers. Acta Ophthalmol 97(4):e540–e544PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Sivaprasad S, Crosby-Nwaobi R, Heng LZ, Peto T, Michaelides M, Hykin P (2013) Injection frequency and response to bevacizumab monotherapy for diabetic macular oedema (BOLT Report 5). Br J Ophthalmol 97(9):1177–1180PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Korobelnik JF, Lu C, Katz TA, Dhoot DS, Loewenstein A, Arnold J et al (2019) Effect of baseline subretinal fluid on treatment outcomes in VIVID-DME and VISTA-DME studies. Ophthalmol Retina 3(8):663–669.  https://doi.org/10.1016/j.oret.2019.03.015 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Tsai M‑J, Hsieh Y‑T, Shen EP, Peng Y‑J (2017) Systemic associations with residual subretinal fluid after ranibizumab in diabetic macular edema. J Ophthalmol.  https://doi.org/10.1155/2017/4834201 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Sonoda S, Sakamoto T, Shirasawa M, Yamashita T, Otsuka H, Terasaki H (2013) Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema. Investig Ophthalmol Vis Sci 54(8):5367–5374CrossRefGoogle Scholar
  99. 99.
    Zhu D, Zhu H, Wang C, Yang D (2014) Intraocular soluble intracellular adhesion molecule‑1 correlates with subretinal fluid height of diabetic macular edema. Indian J Ophthalmol 62(3):295PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Guyon B, Elphege E, Flores M, Gauthier AS, Delbosc B, Saleh M (2017) Retinal reflectivity measurement for cone impairment estimation and visual assessment after diabetic macular edema resolution (RECOVER-DME). Invest Ophthalmol Vis Sci 58(14):6241–6247.  https://doi.org/10.1167/iovs.17-22380 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Wanek J, Blair NP, Chau FY, Lim JI, Leiderman YI, Shahidi M (2016) Alterations in retinal layer thickness and reflectance at different stages of diabetic retinopathy by en face optical coherence tomography. Invest Ophthalmol Vis Sci 57(9):OCT341–7.  https://doi.org/10.1167/iovs.15-18715 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Toprak I, Yildirim C, Yaylali V (2015) Impaired photoreceptor inner segment ellipsoid layer reflectivity in mild diabetic retinopathy. Can J Ophthalmol 50(6):438–441.  https://doi.org/10.1016/j.jcjo.2015.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Scarinci F, Jampol LM, Linsenmeier RA, Fawzi AA (2015) Association of diabetic macular Nonperfusion with outer retinal disruption on optical coherence tomography. JAMA Ophthalmol 133(9):1036–1044.  https://doi.org/10.1001/jamaophthalmol.2015.2183 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Shen Y, Liu K, Xu X (2016) Correlation between visual function and photoreceptor integrity in diabetic macular edema: spectral-domain optical coherence tomography. Curr Eye Res 41(3):391–399.  https://doi.org/10.3109/02713683.2015.1019003 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Wang JW, Jie CH, Tao YJ, Meng N, Hu YC, Wu ZZ et al (2018) Macular integrity assessment to determine the association between macular microstructure and functional parameters in diabetic macular edema. Int J Ophthalmol 11(7):1185–1191.  https://doi.org/10.18240/ijo.2018.07.18 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Mori Y, Suzuma K, Uji A, Ishihara K, Yoshitake S, Fujimoto M et al (2016) Restoration of foveal photoreceptors after intravitreal ranibizumab injections for diabetic macular edema. Sci Rep 6:39161.  https://doi.org/10.1038/srep39161 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Adhi M, Badaro E, Liu JJ, Kraus MF, Baumal CR, Witkin AJ et al (2016) Three-dimensional enhanced imaging of vitreoretinal interface in diabetic retinopathy using swept-source optical coherence tomography. Am J Ophthalmol 162:140–149.e1.  https://doi.org/10.1016/j.ajo.2015.10.025 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Khan AI, Mohamed MD, Mann SS, Hysi PG, Laidlaw DA (2015) Prevalence of vitreomacular interface abnormalities on spectral domain optical coherence tomography of patients undergoing macular photocoagulation for centre involving diabetic macular oedema. Br J Ophthalmol 99(8):1078–1081.  https://doi.org/10.1136/bjophthalmol-2014-305966 CrossRefGoogle Scholar
  109. 109.
    Yannuzzi LA, Rohrer KT, Tindel LJ, Sobel RS, Costanza MA, Shields W et al (1986) Fluorescein angiography complication survey. Ophthalmology 93(5):611–617PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Ha SO, Kim DY, Sohn CH, Lim KS (2014) Anaphylaxis caused by intravenous fluorescein: clinical characteristics and review of literature. Intern Emerg Med 9(3):325–330.  https://doi.org/10.1007/s11739-013-1019-6 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Kwiterovich KA, Maguire MG, Murphy RP, Schachat AP, Bressler NM, Bressler SB et al (1991) Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology 98(7):1139–1142PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Almalki WH, Abdalla AN, Elkeraie AF, Abdelhadi AM, Elrggal M, Elrggal ME (2017) Effect of fluorescein angiography on renal functions in type 2 diabetes patients: A pilot study. Saudi J Kidney Dis Transpl 28(3):491–498.  https://doi.org/10.4103/1319-2442.206444 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Kameda Y, Babazono T, Haruyama K, Iwamoto Y, Kitano S (2009) Renal function following fluorescein angiography in diabetic patients with chronic kidney disease. Diabetes Care 32(3):e31.  https://doi.org/10.2337/dc08-1692 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Lee JH, Chung B, Lee SC, Kim SS, Koh HJ, Lee CS (2017) Lower incidence of contrast-induced nephropathy in patients undergoing fluorescent angiography. BMC Ophthalmol 17(1):46.  https://doi.org/10.1186/s12886-017-0440-4 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ et al (2015) Optical coherence tomography angiography features of diabetic retinopathy. Retina 35(11):2371–2376.  https://doi.org/10.1097/IAE.0000000000000716 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K et al (2015) Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 160(1):35–44.  https://doi.org/10.1016/j.ajo.2015.04.021 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Couturier A, Mane V, Bonnin S, Erginay A, Massin P, Gaudric A et al (2015) Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina 35(11):2384–2391.  https://doi.org/10.1097/IAE.0000000000000859 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Spaide RF, Klancnik JM Jr., Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133(1):45–50.  https://doi.org/10.1001/jamaophthalmol.2014.3616 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Ting DSW, Tan GSW, Agrawal R, Yanagi Y, Sie NM, Wong CW et al (2017) Optical coherence tomographic angiography in type 2 diabetes and diabetic retinopathy. JAMA Ophthalmol 135(4):306–312.  https://doi.org/10.1001/jamaophthalmol.2016.5877 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Soares M, Neves C, Marques IP, Pires I, Schwartz C, Costa MA et al (2017) Comparison of diabetic retinopathy classification using fluorescein angiography and optical coherence tomography angiography. Br J Ophthalmol 101(1):62–68.  https://doi.org/10.1136/bjophthalmol-2016-309424 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, Flaxel CJ et al (2016) Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol 134(4):367–373.  https://doi.org/10.1001/jamaophthalmol.2015.5658 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Lang GE, Enders C, Loidl M, Lang GK, Werner JU (2017) Präzise Befundung mit der OCT-Angiografie–Artefakte erkennen und ausschließen. Klin Monatsbl Augenheilkd 234(09):1109–1118PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Deutsche Ophthalmologische Gesellschaft, Berufsverband der Augenärzte Deutschlands e.V., Retinologische Gesellschaft e.V. (2017) Stellungnahme des BVA, der DOG und der RG: OCT-Angiographie in Deutschland. Ophthalmologe 114(5):432–438CrossRefGoogle Scholar
  124. 124.
    Stanga PE, Papayannis A, Tsamis E, Stringa F, Cole T, D’Souza Y et al (2016) New findings in diabetic maculopathy and proliferative disease by swept-source optical coherence tomography angiography. Dev Ophthalmol 56:113–121.  https://doi.org/10.1159/000442802 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Tan TE, Nguyen Q, Chua J, Schmetterer L, Tan GSW, Wong CW et al (2019) Global assessment of retinal arteriolar, venular and capillary microcirculations using fundus photographs and optical coherence tomography angiography in diabetic Retinopathy. Sci Rep 9(1):11751.  https://doi.org/10.1038/s41598-019-47770-9 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Sun Z, Tang F, Wong R, Lok J, Szeto SKH, Chan JCK et al (2019) OCT angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema: a prospective study. Ophthalmology.  https://doi.org/10.1016/j.ophtha.2019.06.016 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Hsieh YT, Alam MN, Le D, Hsiao CC, Yang CH, Chao DL et al (2019) OCT angiography biomarkers for predicting visual outcomes after ranibizumab treatment for diabetic macular edema. Ophthalmol Retina.  https://doi.org/10.1016/j.oret.2019.04.027 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Daruich A, Matet A, Moulin A, Kowalczuk L, Nicolas M, Sellam A et al (2018) Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res 63:20–68PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Ziemssen F, Marahrens L, Roeck D, Agostini H (2018) Klinische Stadieneinteilung der diabetischen Retinopathie. Diabetologe 14(8):550–556CrossRefGoogle Scholar
  130. 130.
    Browning DJ, Altaweel MM, Bressler NM, Bressler SB, Scott IU, Network DRCR (2008) Diabetic macular edema: what is focal and what is diffuse? Am J Ophthalmol 146(5):649–655PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Early Treatment Diabetic Retinopathy Study Research Group (1987) Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema: Early Treatment Diabetic Retinopathy Study report number 2. Ophthalmology 94(7):761–774CrossRefGoogle Scholar
  132. 132.
    Browning DJ, McOwen MD, Bowen RM Jr, Tisha LO (2004) Comparison of the clinical diagnosis of diabetic macular edema with diagnosis by optical coherence tomography. Ophthalmology 111(4):712–715PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Wang H, Chhablani J, Freeman WR, Chan CK, Kozak I, Bartsch D‑U et al (2012) Characterization of diabetic microaneurysms by simultaneous fluorescein angiography and spectral-domain optical coherence tomography. Am J Ophthalmol 153(5):861–867.e1PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Kozak I, El-Emam SY, Cheng L, Bartsch D‑U, Chhablani J, Freeman WR et al (2014) Fluorescein angiography versus optical coherence tomography-guided planning for macular laser photocoagulation in diabetic macular edema. Retina 34(8):1600PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Diabetic Retinopathy Clinical Research Network (2007) Relationship between optical coherence tomography–measured central retinal thickness and visual acuity in diabetic macular edema. Ophthalmology 114(3):525–536CrossRefGoogle Scholar
  136. 136.
    Early Treatment Diabetic Retinopathy Study Research Group (1985) Early treatment diabetic retinopathy study report number 1; Photocoagulation for diabetic macular edema. Arch Ophthalmol 103:1796–1806CrossRefGoogle Scholar
  137. 137.
    Johannesen SK, Viken JN, Vergmann AS, Grauslund J (2019) Optical coherence tomography angiography and microvascular changes in diabetic retinopathy: a systematic review. Acta Ophthalmol 97(1):7–14PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Hirano T, Kitahara J, Toriyama Y, Kasamatsu H, Murata T, Sadda S (2019) Quantifying vascular density and morphology using different swept-source optical coherence tomography angiographic scan patterns in diabetic retinopathy. Br J Ophthalmol 103(2):216–221PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Sim DA, Keane PA, Zarranz-Ventura J, Fung S, Powner MB, Platteau E et al (2013) The effects of macular ischemia on visual acuity in diabetic retinopathy. Investig Ophthalmol Vis Sci 54(3):2353–2360CrossRefGoogle Scholar
  140. 140.
    Lee D‑H, Kim JT, Jung D‑W, Joe SG, Yoon YH (2013) The relationship between foveal ischemia and spectral-domain optical coherence tomography findings in ischemic diabetic macular edema. Investig Ophthalmol Vis Sci 54(2):1080–1085CrossRefGoogle Scholar
  141. 141.
    Sim DA, Keane PA, Fung S, Karampelas M, Sadda SR, Fruttiger M et al (2014) Quantitative analysis of diabetic macular ischemia using optical coherence tomography. Investig Ophthalmol Vis Sci 55(1):417–423CrossRefGoogle Scholar
  142. 142.
    Selvam S, Sim DA, Keane PA, Rajendram R, Karampelas M, Fruttiger M et al (2014) Patterns of peripheral retinal and central macula Ischemia in diabetic retinopathy as evaluated by ultra widefield fluorescein angiography. Investig Ophthalmol Vis Sci 55(13):260Google Scholar
  143. 143.
    Patel RD, Messner LV, Teitelbaum B, Michel KA, Hariprasad SM (2013) Characterization of ischemic index using ultra-widefield fluorescein angiography in patients with focal and diffuse recalcitrant diabetic macular edema. Am J Ophthalmol 155(6):1038–1044.e2PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Tsui I, Williams BK, Kok YO, Heilweil G, Schwartz SD (2015) Reliability of ischemic index grading in common retinal vascular diseases. Ophthalmic Surg Lasers Imaging Retin 46(6):618–625CrossRefGoogle Scholar
  145. 145.
    Brown DM, Ou WC, Wong TP, Kim RY, Croft DE, Wykoff CC et al (2018) Targeted retinal photocoagulation for diabetic macular edema with peripheral retinal nonperfusion: three-year randomized DAVE trial. Ophthalmology 125(5):683–690PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Sophie R, Lu N, Campochiaro PA (2015) Predictors of functional and anatomic outcomes in patients with diabetic macular edema treated with ranibizumab. Ophthalmology 122(7):1395–1401PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Dhoot DS, Baker K, Saroj N, Vitti R, Berliner AJ, Metzig C et al (2018) Baseline factors affecting changes in diabetic retinopathy severity scale score after intravitreal aflibercept or laser for diabetic macular edema: post hoc analyses from VISTA and VIVID. Ophthalmology 125(1):51–56PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Guyon B, Elphege E, Flores M, Gauthier A‑S, Delbosc B, Saleh M (2017) Retinal Reflectivity measurement for cone impairment estimation and visual assessment after diabetic macular edema resolution (RECOVER-DME). Investig Ophthalmol Vis Sci 58(14):6241–6247CrossRefGoogle Scholar
  149. 149.
    Ziemssen F, Roeck D, Marahrens L, Agostini H (2018) Bildgebung der diabetischen Retinopathie. Diabetologe 14(8):557–567CrossRefGoogle Scholar
  150. 150.
    Baker CW, Glassman AR, Beaulieu WT, Antoszyk AN, Browning DJ, Chalam KV et al (2019) Effect of initial management with aflibercept vs laser photocoagulation vs observation on vision loss among patients with diabetic macular edema involving the center of the macula and good visual acuity: a randomized clinical trial. JAMA 321(19):1880–1894.  https://doi.org/10.1001/jama.2019.5790 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Peto T, Chakravarthy U (2019) New findings from diabetic retinopathy clinical research retina network protocol V confirm a role for focal laser photocoagulation or observation for eyes with center-involved diabetic macular edema and good visual acuity: new is not always best. JAMA Ophthalmol 137(7):838–839.  https://doi.org/10.1001/jamaophthalmol.2019.1876 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Payne JF, Wykoff CC, Clark WL, Bruce BB, Boyer DS, Brown DM et al (2019) Randomized trial of treat & extend ranibizumab with & without navigated laser versus monthly dosing for DME: TREX-DME 2 year outcomes. Am J Ophthalmol 124(1):74–81.  https://doi.org/10.1016/j.ophtha.2016.09.021 CrossRefGoogle Scholar
  153. 153.
    Ansari WH, Han MM, Haq S, Conti FF, Silva FQ, Singh RP (2019) Baseline ocular characteristics of patients undergoing initiation of anti-vascular endothelial growth factor therapy for diabetic macular edema. Ophthalmic Surg Lasers Imaging Retina 50(2):69–75PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Ziemssen F, Feltgen N, Holz F, Guthoff R, Ringwald A, Bertelmann T et al (2017) Demographics of patients receiving Intravitreal anti-VEGF treatment in real-world practice: healthcare research data versus randomized controlled trials. BMC Ophthalmol 17(1):7PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Haq S, Ansari WH, Han MM, Conti TF, Conti FF, Silva FQ et al (2019) Characterization of the systemic findings of patients undergoing initiation of anti-vascular endothelial growth factor therapy for diabetic macular edema in routine clinical practice. Ophthalmic Surg Lasers Imaging Retina 50(1):16–24PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Liew G, Wong VW, Saw M, Tsang TE, Nolan T, Ong S et al (2019) Profile of a population-based diabetic macular oedema study: the Liverpool Eye and Diabetes Study (Sydney). BMJ Open 9(1):e21884PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Do DV, Nguyen QD, Vitti R, Berliner AJ, Gibson A, Saroj N et al (2016) Intravitreal aflibercept injection in diabetic macular edema patients with and without prior anti–vascular endothelial growth factor treatment: outcomes from the phase 3 program. Ophthalmology 123(4):850–857PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Rajendram R, Fraser-Bell S, Kaines A, Michaelides M, Hamilton RD, Degli Esposti S et al (2012) A 2‑year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3. Arch Ophthalmol 130(8):972–979PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Schmidt-Erfurth U, Lang GE, Holz FG, Schlingemann RO, Lanzetta P, Massin P et al (2014) Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: the RESTORE extension study. Ophthalmology 121(5):1045–1053PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Ziemssen F, Cruess A, Dunger-Baldauf C, Margaron P, Snow H, Strain WD (2017) Ranibizumab in diabetic macular oedema–a benefit–risk analysis of ranibizumab 0.5 mg PRN versus laser treatment. Eur Endocrinol 13(2):91PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Karst SG, Lammer J, Mitsch C, Schober M, Mehta J, Scholda C et al (2018) Detailed analysis of retinal morphology in patients with diabetic macular edema (DME) randomized to ranibizumab or triamcinolone treatment. Graefes Arch Clin Exp Ophthalmol 256(1):49–58PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Wei Q, Chen R, Lou Q, Yu J (2019) Intravitreal corticosteroid implant vs intravitreal ranibizumab for the treatment of macular edema: a meta-analysis of randomized controlled trials. Drug Des Dev Ther 13:301CrossRefGoogle Scholar
  163. 163.
    Neto HO, Regatieri CV, Nobrega MJ, Muccioli C, Casella AM, Andrade RE et al (2017) Multicenter, randomized clinical trial to assess the effectiveness of Intravitreal injections of bevacizumab, triamcinolone, or their combination in the treatment of diabetic macular edema. Ophthalmic Surg Lasers Imaging Retina 48(9):734–740PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Elman MJ, Ayala A, Bressler NM, Browning D, Flaxel CJ, Glassman AR et al (2015) Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: 5‑year randomized trial results. Ophthalmology 122(2):375–381PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Wordinger RJ, Clarka AF (1999) Effects of glucocorticoids on the trabecular meshwork: towards a better understanding of glaucoma. Prog Retin Eye Res 18(5):629–667PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Kiddee W, Trope GE, Sheng L, Beltran-Agullo L, Smith M, Strungaru MH et al (2013) Intraocular pressure monitoring post intravitreal steroids: a systematic review. Surv Ophthalmol 58(4):291–310PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Goñi FJ, Stalmans I, Denis P, Nordmann J‑P, Taylor S, Diestelhorst M et al (2016) Elevated intraocular pressure after intravitreal steroid injection in diabetic macular edema: monitoring and management. Ophthalmol Ther 5(1):47–61PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Beer PM, Bakri SJ, Singh RJ, Liu W, Peters GB III, Miller M (2003) Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection. Ophthalmology 110(4):681–686PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Maturi RK, Pollack A, Uy HS, Varano M, Gomes A, Li X‑Y et al (2016) Intraocular pressure in patients with diabetic macular edema treated with dexamethasone intravitreal implant in the 3‑year MEAD study. Retina 36(6):1143–1152PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Campochiaro PA, Brown DM, Pearson A, Ciulla T, Boyer D, Holz FG et al (2011) Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology 118(4):626–635.e2PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Bracha P, Moore NA, Ciulla TA, WuDunn D, Cantor LB (2018) The acute and chronic effects of intravitreal anti-vascular endothelial growth factor injections on intraocular pressure: a review. Surv Ophthalmol 63(3):281–295PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Wen JC, Reina-Torres E, Sherwood JM, Challa P, Liu KC, Li G et al (2017) Intravitreal anti-VEGF injections reduce aqueous outflow facility in patients with neovascular age-related macular degeneration. Investig Ophthalmol Vis Sci 58(3):1893–1898CrossRefGoogle Scholar
  173. 173.
    Bressler SB, Almukhtar T, Bhorade A, Bressler NM, Glassman AR, Huang SS et al (2015) Repeated intravitreous ranibizumab injections for diabetic macular edema and the risk of sustained elevation of intraocular pressure or the need for ocular hypotensive treatment. JAMA Ophthalmol 133(5):589–597PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Kim SV, Fajnkuchen F, Sarda V, Qu-Knafo L, Bodaghi B, Giocanti-Aurégan A (2017) Sustained intraocular pressure elevation in eyes treated with intravitreal injections of anti-vascular endothelial growth factor for diabetic macular edema in a real-life setting. Graefes Arch Clin Exp Ophthalmol 255(11):2165–2171CrossRefGoogle Scholar
  175. 175.
    Freund KB, Hoang QV, Saroj N, Thompson D (2015) Intraocular pressure in patients with neovascular age-related macular degeneration receiving intravitreal aflibercept or ranibizumab. Ophthalmology 122(9):1802–1810PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Zhou Y, Zhou M, Xia S, Jing Q, Gao L (2016) Sustained elevation of intraocular pressure associated with intravitreal administration of anti-vascular endothelial growth factor: a systematic review and meta-analysis. Sci Rep 6:39301PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Elman MJ, Bressler NM, Qin H, Beck RW, Ferris FL III, Friedman SM et al (2011) Expanded 2‑year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 118(4):609–614PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Superstein R (2001) Indications for cataract surgery. Curr Opin Ophthalmol 12(1):58–62PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Peterson SR, Silva PA, Murtha TJ, Sun JK (2018) Cataract surgery in patients with diabetes: management strategies. Seminars in Ophthalmology 33:75–82PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Denniston AK, Chakravarthy U, Zhu H, Lee AY, Crabb DP, Tufail A et al (2017) The UK Diabetic Retinopathy Electronic Medical Record (UK DR EMR) Users Group, Report 2: real-world data for the impact of cataract surgery on diabetic macular oedema. Br J Ophthalmol 101(12):1673–1678PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    VanderBeek BL, Bonaffini SG, Ma L (2015) The association between intravitreal steroids and post-injection endophthalmitis rates. Ophthalmology 122(11):2311–2315.e1PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Rayess N, Rahimy E, Storey P, Shah CP, Wolfe JD, Chen E et al (2016) Postinjection endophthalmitis rates and characteristics following intravitreal bevacizumab, ranibizumab, and aflibercept. Am J Ophthalmol 165:88–93PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Bhavsar AR, Googe JM, Stockdale CR, Bressler NM, Brucker AJ, Elman MJ et al (2009) Risk of endophthalmitis after intravitreal drug injection when topical antibiotics are not required: the diabetic retinopathy clinical research network laser-ranibizumab-triamcinolone clinical trials. Arch Ophthalmol 127(12):1581–1583PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Campochiaro PA, Nguyen QD, Hafiz G, Bloom S, Brown DM, Busquets M et al (2013) Aqueous levels of fluocinolone acetonide after administration of fluocinolone acetonide inserts or fluocinolone acetonide implants. Ophthalmology 120(3):583–587PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Chang-Lin J‑E, Attar M, Acheampong AA, Robinson MR, Whitcup SM, Kuppermann BD et al (2011) Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Investig Ophthalmol Vis Sci 52(1):80–86CrossRefGoogle Scholar
  186. 186.
    Edington M, Connolly J, Chong NV (2017) Pharmacokinetics of intravitreal anti-VEGF drugs in vitrectomized versus non-vitrectomized eyes. Expert Opin Drug Metab Toxicol 13(12):1217–1224PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Stewart MW (2014) Pharmacokinetics, pharmacodynamics and pre-clinical characteristics of ophthalmic drugs that bind VEGF. Expert Rev Clin Pharmacol 7(2):167–180PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Pochopien M, Beiderbeck A, McEwan P, Zur R, Toumi M, Aballéa S (2019) Cost-effectiveness of fluocinolone acetonide implant (ILUVIEN®) in UK patients with chronic diabetic macular oedema considered insufficiently responsive to available therapies. BMC Health Serv Res 19(1):22PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Fraser-Bell S, Lim LL, Campain A, Mehta H, Aroney C, Bryant J et al (2016) Bevacizumab or dexamethasone implants for DME: 2‑year results (the BEVORDEX study). Ophthalmology 123(6):1399–1401.  https://doi.org/10.1016/j.ophtha.2015.12.012 CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Ramu J, Yang Y, Menon G, Bailey C, Narendran N, Bunce C et al (2015) A randomized clinical trial comparing fixed vs pro-re-nata dosing of Ozurdex in refractory diabetic macular oedema (OZDRY study). Eye 29(12):1603PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Deonandan R, Jones S (2017) Anti-vascular endothelial growth factor drugs for the treatment of retinal conditions: a review of the safety. Canadian Agency for Drugs and Technologies in Health, Ottawa (ON). PMID: 28825785Google Scholar
  192. 192.
    Thulliez M, Angoulvant D, Le Lez ML, Jonville-Bera A‑P, Pisella P‑J, Gueyffier F et al (2014) Cardiovascular events and bleeding risk associated with intravitreal antivascular endothelial growth factor monoclonal antibodies: systematic review and meta-analysis. JAMA Ophthalmol 132(11):1317–1326PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Avery RL, Gordon GM (2016) Systemic safety of prolonged monthly anti–vascular endothelial growth factor therapy for diabetic macular edema: a systematic review and meta-analysis. JAMA Ophthalmol 134(1):21–29PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Avery RL, Castellarin AA, Steinle NC, Dhoot DS, Pieramici DJ, See R et al (2017) Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina 37(10):1847PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Maloney MH, Schilz SR, Herrin J, Sangaralingham LR, Shah ND, Barkmeier AJ (2018) Risk of systemic adverse events associated with Intravitreal anti–VEGF therapy for diabetic macular edema in routine clinical practice. Ophthalmology.  https://doi.org/10.1016/j.ophtha.2018.09.040 CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Grover DA, Li T, Chong CC (2008) Intravitreal steroids for macular edema in diabetes. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD005656.pub2 CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Schatz H, Madeira D, McDonald HR, Johnson RN (1991) Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema. Arch Ophthalmol 109(11):1549–1551PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Pearce E, Sivaprasad S, Chong NV (2014) Factors affecting reading speed in patients with diabetic macular edema treated with laser photocoagulation. Plos One 9(9):e105696PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Comyn O, Sivaprasad S, Peto T, Neveu MM, Holder GE, Xing W et al (2014) A randomized trial to assess functional and structural effects of ranibizumab versus laser in diabetic macular edema (the LUCIDATE study). Am J Ophthalmol 157(5):960–970.e2PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Heier JS, Korobelnik JF, Brown DM, Schmidt-Erfurth U, Do DV, Midena E et al (2016) Intravitreal aflibercept for diabetic macular edema: 148-week results from the VISTA and VIVID studies. Ophthalmology 123(11):2376–2385.  https://doi.org/10.1016/j.ophtha.2016.07.032 CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Sivertsen MS, Jørstad ØK, Grevys A, Foss S, Moe MC, Andersen JT (2018) Pharmaceutical compounding of aflibercept in prefilled syringes does not affect structural integrity, stability or VEGF and Fc binding properties. Sci Rep 8(1):2101PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    de Lima FJ, Sano R, Maugéri IML, Teixeira D, Ishimura ME, Martins G et al (2018) Evaluation of aflibercept and ziv-aflibercept binding affinity to vascular endothelial growth factor, stability and sterility after compounding. Int J Retina Vitreous 4(1):39CrossRefGoogle Scholar
  203. 203.
    Subhi Y, Kjer B, Munch IC (2016) Prefilled syringes for intravitreal injection reduce preparation time. Dan Med J 63(4):A5214PubMedPubMedCentralGoogle Scholar
  204. 204.
    Mansour AM, Ashraf M, Charbaji A, Younis MH, Souka AA, Dogra A et al (2018) Two-year outcomes of intravitreal ziv-aflibercept. Br J Ophthalmol 102(10):1387–1390PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Network DRCR (2007) A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology 114(10):1860–1867.e7CrossRefGoogle Scholar
  206. 206.
    Fortin P, Mintzes B, Innes M (2013) A systematic review of intravitreal bevacizumab for the treatment of diabetic macular edema. CADTH Technol Overv 3(1):e3103PubMedCentralGoogle Scholar
  207. 207.
    Bressler SB, Liu D, Glassman AR, Blodi BA, Castellarin AA, Jampol LM et al (2017) Change in diabetic retinopathy through 2 years: secondary analysis of a randomized clinical trial comparing aflibercept, bevacizumab, and ranibizumab. JAMA Ophthalmol 135(6):558–568.  https://doi.org/10.1001/jamaophthalmol.2017.0821 CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Holekamp NM, Campbell J, Almony A, Ingraham H, Marks S, Chandwani H et al (2018) Vision outcomes following anti–vascular endothelial growth factor treatment of diabetic macular edema in clinical practice. Am J Ophthalmol 191:83–91PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Ziemssen F, Wachtlin J, Kuehlewein L, Gamulescu M‑A, Bertelmann T, Feucht N et al (2018) Intravitreal Ranibizumab therapy for diabetic macular edema in routine practice: two-year real-life data from a non-interventional, multicenter study in Germany. Diabetes Ther 9(6):2271–2289PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Wilke RG, Finger RP, Sachs HG (2017) Real-life data on the treatment of diabetic macular oedema in Germany. Klin Monatsbl Augenheilkd 234(12):1502–1507PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Stefanickova J, Cunha-Vaz J, Ulbig M, Pearce I, Fernández-Vega Sanz A, Theodossiadis P et al (2018) A noninterventional study to monitor patients with diabetic macular oedema starting treatment with ranibizumab (POLARIS). Acta Ophthalmol 96(8):e942–e949PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Ferris FL 3rd, Maguire MG, Glassman AR, Ying GS, Martin DF (2017) Evaluating effects of switching anti-vascular endothelial growth factor drugs for age-related macular degeneration and diabetic macular edema. JAMA Ophthalmol 135(2):145–149.  https://doi.org/10.1001/jamaophthalmol.2016.4820 CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Banaee T, Ashraf M, Conti FF, Singh RP (2017) Switching anti-VEGF drugs in the treatment of diabetic macular edema. Ophthalmic Surg Lasers Imaging Retina 48(9):748–754.  https://doi.org/10.3928/23258160-20170829-10 CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Ehlers JP, Wang K, Singh RP, Babiuch AS, Schachat AP, Yuan A et al (2018) A prospective randomized comparative dosing trial of ranibizumab in bevacizumab-resistant diabetic macular edema: the REACT study. Ophthalmol Retina 2(3):217–224PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Shah CP, Heier JS (2016) Aflibercept for diabetic macular edema in eyes previously treated with ranibizumab and/or bevacizumab May further improve macular thickness. Ophthalmic Surg Lasers Imaging Retina 47(9):836–839.  https://doi.org/10.3928/23258160-20160901-06 CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Bressler SB, Odia I, Maguire MG, Dhoot DS, Glassman AR, Jampol LM et al (2019) Factors associated with visual acuity and central Subfield thickness changes when treating diabetic macular edema with anti–vascular endothelial growth factor therapy: an exploratory analysis of the protocol T randomized clinical trial. JAMA Ophthalmol 137:382–389PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Busch C, Zur D, Fraser-Bell S, Lains I, Santos AR, Lupidi M et al (2018) Shall we stay, or shall we switch? Continued anti-VEGF therapy versus early switch to dexamethasone implant in refractory diabetic macular edema. Acta Diabetol 55(8):789–796.  https://doi.org/10.1007/s00592-018-1151-x CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Hua W, Cao S, Cui J, Maberley D, Matsubara J (2013) Analysis of reasons for noncompliance with laser treatment in patients of diabetic retinopathy. Can J Ophthalmol 48(2):88–92PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Gale R, Scanlon PH, Evans M, Ghanchi F, Yang Y, Silvestri G et al (2017) Action on diabetic macular oedema: achieving optimal patient management in treating visual impairment due to diabetic eye disease. Eye 31(S1):S1PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Duan F, Liu Y, Chen X, Congdon N, Zhang J, Chen Q et al (2017) Influencing factors on compliance of timely visits among patients with proliferative diabetic retinopathy in southern China: a qualitative study. BMJ Open 7(3):e13578PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Degner LF, Kristjanson LJ, Bowman D, Sloan JA, Carriere K, O’neil J et al (1997) Information needs and decisional preferences in women with breast cancer. JAMA 277(18):1485–1492PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    He Y, Ren X‑J, Hu B‑J, Lam W‑C, X‑r L (2018) A meta-analysis of the effect of a dexamethasone intravitreal implant versus intravitreal anti-vascular endothelial growth factor treatment for diabetic macular edema. Bmc Ophthalmol 18(1):121PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Wong TY, Sun J, Kawasaki R, Ruamviboonsuk P, Gupta N, Lansingh VC et al (2018) Guidelines on diabetic eye care: the international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology.  https://doi.org/10.1016/j.ophtha.2018.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Moulin TA, Boakye EA, Wirth LS, Chen J, Burroughs TE, Vollman DE (2019) Yearly treatment patterns for patients with recently diagnosed diabetic macular edema. Ophthalmol Retina 3(4):362–370PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Jandorf S, Krogh Nielsen M, Sorensen K, Sorensen TL (2019) Low health literacy levels in patients with chronic retinal disease. BMC Ophthalmol 19(1):174.  https://doi.org/10.1186/s12886-019-1191-1 CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Juthani VV, Clearfield E, Chuck RS (2017) Non-steroidal anti-inflammatory drugs versus corticosteroids for controlling inflammation after uncomplicated cataract surgery. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD010516.pub2 CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Wielders LHP, Schouten J, Nuijts R (2018) Prevention of macular edema after cataract surgery. Curr Opin Ophthalmol 29(1):48–53.  https://doi.org/10.1097/ICU.0000000000000436 CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Wielders LH, Lambermont VA, Schouten JS, van den Biggelaar FJ, Worthy G, Simons RW et al (2015) Prevention of cystoid macular edema after cataract surgery in Nondiabetic and diabetic patients: a systematic review and meta-analysis. Am J Ophthalmol 160(5):968–981e33..  https://doi.org/10.1016/j.ajo.2015.07.032 CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Wielders LHP, Schouten J, Winkens B, van den Biggelaar F, Veldhuizen CA, Murta JCN et al (2018) Randomized controlled European multicenter trial on the prevention of cystoid macular edema after cataract surgery in diabetics: ESCRS PREMED Study Report 2. J Cataract Refract Surg 44(7):836–847.  https://doi.org/10.1016/j.jcrs.2018.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Gillies MC, Lim LL, Campain A, Quin GJ, Salem W, Li J et al (2014) A randomized clinical trial of intravitreal bevacizumab versus intravitreal dexamethasone for diabetic macular edema: the BEVORDEX study. Ophthalmology 121(12):2473–2481PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Limited AS (2015) Fachinformation Iluvien. BPhArm Zul.-Nr. 82809.00.00: Rote Liste Service GmbHGoogle Scholar
  232. 232.
    Ireland AP (2016) Fachinformation Ozurdex. EU Zulassungsnummer EU/1/10/638/001: Rote Liste Service GmbHGoogle Scholar
  233. 233.
    Shah SU, Harless A, Bleau L, Maturi RK (2016) Prospective randomized subject-masked study of intravitreal bevacizumab monotherapy versus dexamethasone implant monotherapy in the treatment of persistent diabetic macular edema. Retina 36(10):1986–1996PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Chan CK, Mohamed S, Shanmugam MP, Tsang C‑W, Lai TY, Lam DS (2006) Decreasing efficacy of repeated intravitreal triamcinolone injections in diabetic macular oedema. Br J Ophthalmol 90(9):1137–1141PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Group EToDRSR (1995) Focal photocoagulation treatment of diabetic macular edema. Relationship of treatment effect to fluorescein angiographic and other retinal charactereistics at baseline. ETDRS report number 19. Ophthalmology 113:1144–1155Google Scholar
  236. 236.
    Network DRCR (2009) The course of response to focal/grid photocoagulation for diabetic macular edema. Retina 29(10):1436CrossRefGoogle Scholar
  237. 237.
    Palanker DV, Blumenkranz MS, Marmor MF (2011) Fifty years of ophthalmic laser therapy. Arch Ophthalmol 129(12):1613–1619PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Kang H, Su L, Zhang H, Li X, Zhang L, Tian F (2010) Early histological alteration of the retina following photocoagulation treatment in diabetic retinopathy as measured by spectral domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 248(12):1705–1711PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Aiello LP, Edwards AR, Beck RW, Bressler NM, Davis MD, Ferris F et al (2010) Factors associated with improvement and worsening of visual acuity 2 years after focal/grid photocoagulation for diabetic macular edema. Ophthalmology 117(5):946–953PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Group ETDRSR (1987) Techniques for scatter and local photocoagulation treatment of diabetic retinopathy: early Treatment Diabetic Retinopathy Study Report no. 3. Int Ophthalmol Clin 27(4):254–264CrossRefGoogle Scholar
  241. 241.
    Wu Y, Ai P, Ai Z, Xu G (2018) Subthreshold diode micropulse laser versus conventional laser photocoagulation monotherapy or combined with anti-VEGF therapy for diabetic macular edema: a Bayesian network meta-analysis. Biomed Pharmacother 97:293–299PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Lavinsky D, Sramek C, Wang J, Huie P, Dalal R, Mandel Y et al (2014) Subvisible retinal laser therapy: titration algorithm and tissue response. Retina 34(1):87–97PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Crosson JN, Mason L, Mason JO (2017) The role of focal laser in the anti–vascular endothelial growth factor era. Ophthalmol Eye Dis 9:1179172117738240PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Greenstein VC, Chen H, Hood DC, Holopigian K, Seiple W, Carr RE (2000) Retinal function in diabetic macular edema after focal laser photocoagulation. Investig Ophthalmol Vis Sci 41(11):3655–3664Google Scholar
  245. 245.
    Talwar D, Sharma N, Pai A, Azad RV, Kohli A, Virdi PS (2001) Contrast sensitivity following focal laser photocoagulation in clinically significant macular oedema due to diabetic retinopathy. Clin Exp Ophthalmol 29(1):17–21PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Goudinho S, Jerry L, Jacob JM (2018) Changes in visual acuity and contrast sensitivity following macular photocoagulation for clinically significant macular edema: Four month outcomes. Indian J Clin Exp Ophthalmol 4(1):46–49CrossRefGoogle Scholar
  247. 247.
    Luttrull JK, Dorin G (2012) Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabetic macular edema: a review. Curr Diabetes Rev 8(4):274–284PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Hamada M, Ohkoshi K, Inagaki K, Ebihara N, Murakami A (2018) Subthreshold photocoagulation using endpoint management in the PASCAL® system for diffuse diabetic macular edema. J Ophthalmol.  https://doi.org/10.1155/2018/7465794 CrossRefPubMedPubMedCentralGoogle Scholar
  249. 249.
    Majcher C, Gurwood AS (2011) A review of micropulse laser photocoagulation. Rev Optom 148(11):SS10Google Scholar
  250. 250.
    Roider J, Liew SHM, Klatt C, Elsner H, Poerksen E, Hillenkamp J et al (2010) Selective retina therapy (SRT) for clinically significant diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 248(9):1263–1272PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Vujosevic S, Martini F, Longhin E, Convento E, Cavarzeran F, Midena E (2015) Subthreshold micropulse yellow laser versus subthreshold micropulse infrared laser in center-involving diabetic macular edema: morphologic and functional safety. Retina 35(8):1594–1603.  https://doi.org/10.1097/IAE.0000000000000521 CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    Chen G, Tzekov R, Li W, Jiang F, Mao S, Tong Y (2016) Subthreshold micropulse diode laser versus conventional laser photocoagulation for diabetic macular edema: a meta-analysis of randomized controlled trials. Retina 36(11):2059–2065PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Lavinsky D, Cardillo JA, Melo LA, Dare A, Farah ME, Belfort R (2011) Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema. Investig Ophthalmol Vis Sci 52(7):4314–4323CrossRefGoogle Scholar
  254. 254.
    Herold TR, Langer J, Vounotrypidis E, Kernt M, Liegl R, Priglinger SG (2018) 3‑year-data of combined navigated laser photocoagulation (Navilas) and intravitreal ranibizumab compared to ranibizumab monotherapy in DME patients. PLoS ONE 13(8):e202483.  https://doi.org/10.1371/journal.pone.0202483 CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Neubauer AS, Langer J, Liegl R, Haritoglou C, Wolf A, Kozak I et al (2013) Navigated macular laser decreases retreatment rate for diabetic macular edema: a comparison with conventional macular laser. Clin Ophthalmol 7:121PubMedPubMedCentralGoogle Scholar
  256. 256.
    Kernt M, Cheuteu RE, Cserhati S, Seidensticker F, Liegl RG, Lang J et al (2012) Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (Navilas®). Clin Ophthalmol 6:289PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Or C, Das R, Despotovic I, Alibhai AY, Moult E, Waheed N et al (2019) COmbined multimodal analysis of Peripheral Retinal and mAcular circulation in Diabetic Retinopathy (COPRA Study). Ophthalmol Retina 3:580–588PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Wykoff CC, Nittala MG, Zhou B, Fan W, Velaga SB, Lampen SI et al (2019) Intravitreal aflibercept for retinal non-perfusion in proliferative diabetic retinopathy: outcomes from the RECOVERY randomized trial. Ophthalmol Retina 3:1076–1086PubMedCrossRefPubMedCentralGoogle Scholar
  259. 259.
    Couturier A, Rey PA, Erginay A, Lavia C, Bonnin S, Dupas B et al (2019) Widefield OCT-angiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and edema treated with anti-vascular endothelial growth factor. Ophthalmology.  https://doi.org/10.1016/j.ophtha.2019.06.022 CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, Edwards AR et al (2010) Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 117(6):1064–1077.e35PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Prünte C, Fajnkuchen F, Mahmood S, Ricci F, Hatz K, Studnička J et al (2016) Ranibizumab 0.5 mg treat-and-extend regimen for diabetic macular oedema: the RETAIN study. Br J Ophthalmol 100(6):787–795PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    Berufsverband der Augenärzte Deutschlands e. V., Deutsche Ophthalmologische Gesellschaft, Retinologische Gesellschaft e. V. (2017) Quality assurance of optical coherence tomography for diagnostics of the fundus: positional statement of the BVA, DOG and RG. Ophthalmologe 114:617–624CrossRefGoogle Scholar
  263. 263.
    National Institute for Health and Care Excellence (NICE) (2018) Aflibercept for treating diabetic macular oedema. https://www.nice.org.uk/guidance/ta346. Zugegriffen: 30.12.2019.
  264. 264.
    National Institute for Health and Care Excellence (NICE) (2015) Ranibizumab for treating diabetic macular oedema. http://www.nice.org.uk/guidance/ta274. Zugegriffen: 30.12.2019.
  265. 265.
    Lois N, Gardner E, Waugh N, Azuara-Blanco A, Mistry H, McAuley D et al (2019) Diabetic macular oedema and diode subthreshold micropulse laser (DIAMONDS): study protocol for a randomised controlled trial. Trials 20(1):122PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Ziemssen F, Schlottman PG, Lim JI, Agostini H, Lang GE, Bandello F (2016) Initiation of intravitreal aflibercept injection treatment in patients with diabetic macular edema: a review of VIVID-DME and VISTA-DME data. Int J Retina Vitreous 2:16.  https://doi.org/10.1186/s40942-016-0041-z CrossRefPubMedPubMedCentralGoogle Scholar
  267. 267.
    Busch C, Zur D, Fraser-Bell S, Laíns I, Santos AR, Lupidi M et al (2018) Shall we stay, or shall we switch? Continued anti-VEGF therapy versus early switch to dexamethasone implant in refractory diabetic macular edema. Acta Diabetol 55(8):789–796PubMedCrossRefPubMedCentralGoogle Scholar
  268. 268.
    Bressler NM, Odia I, Maguire M, Glassman AR, Jampol LM, MacCumber MW et al (2019) Association between change in visual acuity and change in central subfield thickness during treatment of diabetic macular edema in participants randomized to aflibercept, bevacizumab, or ranibizumab: a post hoc analysis of the protocol T randomized clinical trial. JAMA Ophthalmol.  https://doi.org/10.1001/jamaophthalmol.2019.1963 CrossRefPubMedPubMedCentralGoogle Scholar
  269. 269.
    Gonzalez VH, Campbell J, Holekamp NM, Kiss S, Loewenstein A, Augustin AJ et al (2016) Early and long-term responses to anti–vascular endothelial growth factor therapy in diabetic macular edema: analysis of protocol I data. Am J Ophthalmol 172:72–79PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Dugel PU, Campbell JH, Kiss S, Loewenstein A, Shih V, Xu X et al (2019) Association between early anatomic response to anti–vascular endothelial growth factor therapy and long-term outcome in diabetic macular edema: an independent analysis of protocol i study data. Retina 39(1):88PubMedCrossRefPubMedCentralGoogle Scholar
  271. 271.
    Bressler NM, Beaulieu WT, Maguire MG, Glassman AR, Blinder KJ, Bressler SB et al (2018) Early response to anti–vascular endothelial growth factor and two-year outcomes among eyes with diabetic macular edema in protocol T. Am J Ophthalmol 195:93–100PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Sepah YJ, Sadiq MA, Boyer D, Callanan D, Gallemore R, Bennett M et al (2016) Twenty-four–month outcomes of the ranibizumab for edema of the macula in diabetes–protocol 3 with high dose (READ-3) study. Ophthalmology 123(12):2581–2587PubMedCrossRefPubMedCentralGoogle Scholar
  273. 273.
    Wykoff CC, Elman MJ, Regillo CD, Ding B, Lu N, Stoilov I (2016) Predictors of diabetic macular edema treatment frequency with ranibizumab during the open-label extension of the RIDE and RISE trials. Ophthalmology 123(8):1716–1721PubMedCrossRefPubMedCentralGoogle Scholar
  274. 274.
    Pearce I, Banerjee S, Burton BJ, Chakravarthy U, Downey L, Gale RP et al (2015) Ranibizumab 0.5 mg for diabetic macular edema with bimonthly monitoring after a phase of initial treatment: 18-month, multicenter, phase IIIB RELIGHT study. Ophthalmology 122(9):1811–1819PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Schwarzer P, Ebneter A, Munk M, Wolf S, Zinkernagel MS (2019) One-year results of using a treat-and-extend regimen without a loading phase with anti-VEGF agents in patients with treatment-naive diabetic macular edema. Ophthalmologica.  https://doi.org/10.1159/000495623 CrossRefPubMedPubMedCentralGoogle Scholar
  276. 276.
    Waser K, Podkowinski D, Pretzl J, Mursch-Edlmayr A, Luft N, Ring M et al (2018) Morphological retinal characteristics of patients with low vision due to diabetic macular edema. Ophthalmologe.  https://doi.org/10.1007/s00347-018-0759-0 CrossRefGoogle Scholar
  277. 277.
    Ehlers JP, Uchida A, Hu M, Figueiredo N, Kaiser PK, Heier JS et al (2019) Higher order assessment of OCT in diabetic macular edema from the VISTA study: ellipsoid zone dynamics and the retinal fluid index. Ophthalmol Retina.  https://doi.org/10.1016/j.oret.2019.06.010 CrossRefPubMedPubMedCentralGoogle Scholar
  278. 278.
    Vié A‑L, Kodjikian L, Agard E, Voirin N, El Chehab H, Denis P et al (2019) Evaluation of obstructive sleep apnea syndrome as A risk factor for diabetic macular edema in patients with type ii diabetes. Retina 39(2):274–280PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Kramer CK, Rodrigues TC, Canani LH, Gross JL, Azevedo MJ (2011) Diabetic retinopathy predicts all-cause mortality and cardiovascular events in both type 1 and 2 diabetes: meta-analysis of observational studies. Diabetes Care 34(5):1238–1244PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Pearce I, Simo R, Lovestam-Adrian M, Wong DT, Evans M (2019) Association between diabetic eye disease and other complications of diabetes: Implications for care. A systematic review. Diabetes Obes Metab 21(3):467–478.  https://doi.org/10.1111/dom.13550 CrossRefPubMedPubMedCentralGoogle Scholar
  281. 281.
    Kramer CK, Retnakaran R (2013) Concordance of retinopathy and nephropathy over time in Type 1 diabetes: an analysis of data from the Diabetes Control and Complications Trial. Diabet Med 30(11):1333–1341.  https://doi.org/10.1111/dme.12296 CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Girach A, Vignati L (2006) Diabetic microvascular complications—can the presence of one predict the development of another? J Diabetes Complicat 20(4):228–237.  https://doi.org/10.1016/j.jdiacomp.2006.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  283. 283.
    Zhang J, Wang Y, Li L, Zhang R, Guo R, Li H et al (2018) Diabetic retinopathy may predict the renal outcomes of patients with diabetic nephropathy. Ren Fail 40(1):243–251.  https://doi.org/10.1080/0886022X.2018.1456453 CrossRefPubMedPubMedCentralGoogle Scholar
  284. 284.
    Lee WJ, Sobrin L, Kang MH, Seong M, Kim YJ, Yi JH et al (2014) Ischemic diabetic retinopathy as a possible prognostic factor for chronic kidney disease progression. Eye 28(9):1119–1125.  https://doi.org/10.1038/eye.2014.130 CrossRefPubMedPubMedCentralGoogle Scholar
  285. 285.
    Park HC, Lee YK, Cho A, Han CH, Noh JW, Shin YJ et al (2019) Diabetic retinopathy is a prognostic factor for progression of chronic kidney disease in the patients with type 2 diabetes mellitus. PLoS ONE 14(7):e220506.  https://doi.org/10.1371/journal.pone.0220506 CrossRefPubMedPubMedCentralGoogle Scholar
  286. 286.
    Motta AAL, Bonanomi M, Ferraz DA, Preti RC, Sophie R, Abalem MF et al (2019) Short-term effects of intravitreal bevacizumab in contrast sensitivity of patients with diabetic macular edema and optimizing glycemic control. Diabetes Res Clin Pract 149:170–178.  https://doi.org/10.1016/j.diabres.2019.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  287. 287.
    Wang YX, Wei WB, Xu L, Jonas JB (2018) Physical activity and eye diseases. The Beijing Eye Study. Acta Ophthalmol.  https://doi.org/10.1111/aos.13962 CrossRefPubMedPubMedCentralGoogle Scholar
  288. 288.
    Sayin N, Kara N, Pekel G (2015) Ocular complications of diabetes mellitus. World J Diabetes 6(1):92–108.  https://doi.org/10.4239/wjd.v6.i1.92 CrossRefPubMedPubMedCentralGoogle Scholar
  289. 289.
    Sun JK, Glassman AR, Beaulieu WT, Stockdale CR, Bressler NM, Flaxel C et al (2019) Rationale and application of the protocol S anti-vascular endothelial growth factor algorithm for proliferative diabetic retinopathy. Ophthalmology 126(1):87–95.  https://doi.org/10.1016/j.ophtha.2018.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  290. 290.
    Preti RC, Ramirez LM, Monteiro ML, Carra MK, Pelayes DE, Takahashi WY (2013) Contrast sensitivity evaluation in high risk proliferative diabetic retinopathy treated with panretinal photocoagulation associated or not with intravitreal bevacizumab injections: a randomised clinical trial. Br J Ophthalmol 97(7):885–889.  https://doi.org/10.1136/bjophthalmol-2012-302675 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Deutsche Ophthalmologische Gesellschaft (DOG)
    • 1
    Email author
  • Retinologische Gesellschaft e. V. (RG)
    • 2
  • Berufsverband der Augenärzte Deutschlands e. V. (BVA)
    • 3
  1. 1.Deutsche Ophthalmologische GesellschaftMünchenDeutschland
  2. 2.Retinologische Gesellschaft e. V.FreiburgDeutschland
  3. 3.Berufsverband der Augenärzte Deutschlands e. V.DüsseldorfDeutschland

Personalised recommendations