Advertisement

Schwere Flüssigkeiten als intraoperatives Instrument in der Netzhautchirurgie

  • Karl BodenEmail author
  • K. Januschowski
  • P. Szurman
Leitthema

Zusammenfassung

Mit der Einführung der flüssigen Perfluorkohlenstoffe (PFCL) kam es zu einem deutlichen Wandel in der vitreoretinalen Chirurgie. Auch komplizierte Netzhautablösungen konnten so zuverlässig und erfolgreich behandelt werden. Die Kombination einer Vitrektomie mit dem Einsatz des PFCL war neben dem technischen Refinement einer der entscheidenden Faktoren für den anhaltenden Erfolg der Pars-plana-Vitrektomie (ppV). Die flüssigen Perfluorkohlenstoffe haben durch das breite Einsatzspektrum und den positiven intraoperativen Einfluss einen festen Platz in der vitreoretinalen Chirurgie eingenommen. Bei regelrechtem und intelligentem Einsatz kann der PFCL als dritte Hand des Netzhautchirurgen gesehen werden. Entgegen der vielfachen Skepsis ist die momentan diskutierte Toxizität bei kurzfristigem Einsatz von PFCL zu vernachlässigen.

Schlüsselwörter

Netzhautablösung Flüssige Perfluorkohlenstoffe Vitreoretinale Chirurgie Toxizität Pars-plana-Vitrektomie  

Heavy liquids as intraoperative instrument in retinal surgery

Abstract

The introduction of perfluorocarbon liquids (PFCL) resuled in a significant change in vitreoretinal surgery. Even complicated retinal detachments could be treated reliably and successfully. The combination of vitrectomy with the use of PFCL was one of the decisive factors for the continuing success of pars plana vitrectomy (ppV) in addition to technical refinements. The PFCLs have become an established part of vitreoretinal surgery due to their wide range of application and the positive intraoperative influence. When applied correctly and intelligently, PFCL can serve as the third hand of a retinal surgeon. Contrary to the widespread scepticism, the currently discussed toxicity of PFCL is negligible for short-term use.

Keywords

Retinal detachment Perfluorocarbon liquids Vitreoretinal surgery Toxicity Pars plana vitrectomy 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

K. Boden, K. Januschowski und P. Szurman geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Machemer R, Buettner H, Norton EWPJ (1971) Vitrectomy: a pars plana approach. Trans Am Acad Ophthalmol Otolaryngol 75(4):813–820Google Scholar
  2. 2.
    Haidt SJ, Clark LC Jr, Ginsberg J (1982) Liquid perfluorocarbon replacement of the eye. Arvo Abstr Suppl to Invest Ophthalmol Vis Sci. Mosby, St Louis, S 233Google Scholar
  3. 3.
    Chang S, Ozmert E, Zimmerman NJ (1988) Intraoperative perfluorocarbon liquids in the management of proliferative vitreoretinopathy. Am J Ophthalmol 106(6):668CrossRefGoogle Scholar
  4. 4.
    Kertes PJ, Wafapoor H, Peyman GA, Calixto NJ, Thompson H (1997) The management of giant retinal tears using perfluoroperhydrophenanthrene: a multicenter case series. Ophthalmology 104(7) 1159–1165.  https://doi.org/10.1016/S0161-6420(97)30168-7 CrossRefGoogle Scholar
  5. 5.
    Bottoni F, Bailo G, Arpa P, Prussiani A, Monticelli M, De Molfetta V (1994) Management of giant retinal tears using perfluorodecalin as a postoperative short-term vitreoretinal tamponade: A long-term follow-up study. Ophthalmic Surg 25(6):365–373Google Scholar
  6. 6.
    Fischer CV, Kulanga HH (2018) Trends in retinal detachment surgery: What has changed compared to 2001? Ophthalmologe 115(8):663–668CrossRefGoogle Scholar
  7. 7.
    Mortada A (1977) Posterior unbuckled part of a giant tear behind the oblique encircling silastic 3 mm band operation. Surgical prevention and treatment. Ophthalmologica 175(3):143–147.  https://doi.org/10.1159/000308646 CrossRefGoogle Scholar
  8. 8.
    Bottoni F, Sborgia M, Arpa P, De Casa N, Bertazzi E, Monticelli M et al (1993) Perfluorocarbon liquids as postoperative short-term vitreous substitutes in complicated retinal detachment. Graefes Arch Clin Exp Ophthalmol 231(11):619–628.  https://doi.org/10.1007/bf00921955 CrossRefGoogle Scholar
  9. 9.
    Rizzo S, Barca F (2014) Vitreous substitute and tamponade substances for microincision vitreoretinal surgery. Dev Ophthalmol 54:92–101.  https://doi.org/10.1159/000360454 CrossRefGoogle Scholar
  10. 10.
    Aguilera Teba F, Mohr A, Eckardt C, Wong D, Kusaka S, Joondeph BC et al (2003) Trypan blue staining in vitreoretinal surgery. Ophthalmology 110(12):2409–2412.  https://doi.org/10.1016/s0161-6420(03)00716-4 CrossRefGoogle Scholar
  11. 11.
    Feron EJ, Veckeneer M, Parys-Van Ginderdeuren R, Van Lommel A, Melles GRJ, Stalmans P (2002) Trypan blue staining of epiretinal membranes in proliferative vitreoretinopathy. Arch Ophthalmol 120(2):141–144.  https://doi.org/10.1001/archopht.120.2.141 CrossRefGoogle Scholar
  12. 12.
    Li K, Wong D, Hiscott P, Stanga P, Groenewald C, McGalliard J (2003) Trypan blue staining of internal limiting membrane and epiretinal membrane during vitrectomy: visual results and histopathological findings. Br J Ophthalmol 87(2):216–219.  https://doi.org/10.1136/bjo.87.2.216 CrossRefGoogle Scholar
  13. 13.
    Shroff C, Gupta C, Astir S, Shroff D, Saha I, Dutta R (2018) Bimanual 25-gauge chandelier technique for direct perfluorocarbon liquid-silicone oil exchange in retinal detachments associated with giant retinal tear. Indian J Ophthalmol 66(12):1849–1851.  https://doi.org/10.4103/ijo.IJO_440_18 CrossRefGoogle Scholar
  14. 14.
    Jang HD, Lee SJ, Park JM (2013) Phacoemulsification with perfluorocarbon liquid using a 23-Gauge transconjunctival sutureless vitrectomy for the management of dislocated crystalline lenses. Graefes Arch Clin Exp Ophthalmol 251(5):1267–1272.  https://doi.org/10.1007/s00417-012-2170-x CrossRefGoogle Scholar
  15. 15.
    Agarwal A, Narang P, Kumar DA, Agarwal A (2014) Clinical outcomes of sleeveless phacotip assisted levitation of dropped nucleus. Br J Ophthalmol 98(10):1429–1434.  https://doi.org/10.1136/bjophthalmol-2013-304737 CrossRefGoogle Scholar
  16. 16.
    Johnson MW, Schneiderman TE (1998) Surgical management of posteriorly dislocated silicone plate intraocular lenses. Current Opinion in Ophthalmology 9(3):11–15CrossRefGoogle Scholar
  17. 17.
    Rowson NJ, Bacon AS, Rosen PH (1992) Perfluorocarbon heavy liquids in the management of posterior dislocation of the lens nucleus during phakoemulsification. Br J Ophthalmol 76(3):169–170.  https://doi.org/10.1136/bjo.76.3.169 CrossRefGoogle Scholar
  18. 18.
    Roldan Pallares M, Vilar Maseda N (2001) Vitrectomy and perfluorocarbons in the management of luxated lenses. Arch Soc Esp Oftalmol 76(7):431–436Google Scholar
  19. 19.
    Shultz RW, Bakri SJ (2011) Treatment for submacular hemorrhage associated with neovascular age-related macular degeneration. Semin Ophthalmol 26(6):361-371.  https://doi.org/10.3109/08820538.2011.585368 CrossRefGoogle Scholar
  20. 20.
    Fleissig E, Barak A, Goldstein M, Loewenstein A, Schwartz S (2017) Massive subretinal and subretinal pigment epithelial hemorrhage displacement with perfluorocarbon liquid using a two-step vitrectomy technique. Graefes Arch Clin Exp Ophthalmol 255(7):1341–1347.  https://doi.org/10.1007/s00417-017-3648-3 CrossRefGoogle Scholar
  21. 21.
    Vermeer KA, Faridpooya K, van Velthoven MEJ, van Meurs JC, Cereda MG, van Zeeburg EJT et al (2016) Intravitreal versus subretinal administration of recombinant tissue plasminogen activator combined with gas for acute submacular hemorrhages due to Age-related macular degeneration. Retina 36(5):914–925.  https://doi.org/10.1097/IAE.0000000000000954 CrossRefGoogle Scholar
  22. 22.
    Waizel M, Todorova MG, Kazerounian S, Rickmann A, Blanke BR, Szurman P (2016) Efficacy of vitrectomy combined with subretinal recombinant tissue plasminogen activator for subretinal versus subpigment epithelial versus combined hemorrhages. Ophthalmologica 236(3):123–132.  https://doi.org/10.1159/000449172 CrossRefGoogle Scholar
  23. 23.
    Szurman P (2012) Subretinal surgery for massive hemorrhage. Ophthalmologe 109(7):657–664.  https://doi.org/10.1007/s00347-012-2566-3 CrossRefGoogle Scholar
  24. 24.
    Pavan PR (1984) Retinal fold in macula following Intraocular gas: an avoidable complication of retinal detachment surgery. Arch Ophthalmol 102(1):83–84CrossRefGoogle Scholar
  25. 25.
    Wong D, Williams RL, German MJ (1998) Exchange of perfluorodecalin for gas or oil: a model for avoiding slippage. Graefes Arch Clin Exp Ophthalmol 236(3):234–237.  https://doi.org/10.1007/s004170050070 CrossRefGoogle Scholar
  26. 26.
    Larrison WI, Frederick AR, Peterson TJ, Topping TM (1993) Posterior retinal folds following vitreoretinal surgery. Arch Ophthalmol 111(5):621–625.  https://doi.org/10.1001/archopht.1993.01090050055028 CrossRefGoogle Scholar
  27. 27.
    Kertes PJ, Peyman GA (1997) Management of dry retinal folds. Int Ophthalmol 21(2):53–55CrossRefGoogle Scholar
  28. 28.
    Heimann H, Bopp S (2011) Retinal folds following retinal detachment surgery. Ophthalmologica 226(Suppl 1):18–26.  https://doi.org/10.1159/000328380 CrossRefGoogle Scholar
  29. 29.
    Cardillo JA, Stout JT, LaBree L, Azen SP, Omphroy L, Cui JZ et al (1997) Post-traumatic proliferative vitreoretinopathy: the epidemiologic profile, onset, risk factors, and visual outcome. Ophthalmology 104(7):1166–1173.  https://doi.org/10.1016/s0161-6420(97)30167-5 CrossRefGoogle Scholar
  30. 30.
    Feng K, Hu Y, Wang C, Shen L, Pang X, Jiang Y et al (2013) Risk factors, anatomical, and visual outcomes of injured eyes with proliferative vitreoretinopathy: eye injury vitrectomy study. Retina 33(8):1512–1518.  https://doi.org/10.1097/IAE.0b013e3182852469 CrossRefGoogle Scholar
  31. 31.
    Imamura Y, Tsubota K, Ishida S, Shigeyasu C, Inoue M (2009) Simultaneous use of intravitreal viscoelastics and perfluorcarbon liquid during vitrectomy for severe globe rupture. Retin Cases Brief Rep 3(3):305–307.  https://doi.org/10.1097/ICB.0b013e31818ad3a8 CrossRefGoogle Scholar
  32. 32.
    Nazarali S, Lapere S, Somani R, Badilla J (2017) A rare case of perfluoro-n-octane in the orbit following vitreoretinal surgery. Can J Ophthalmol 52(3):e113–e115CrossRefGoogle Scholar
  33. 33.
    Lavezzo MM, Hokazono K, Zacharias LC, Ttakahashi WY (2011) Perfluoro-n-octane in orbital cavity after posterior vitrectomy and suture of eye perforating injury: case report. Arq Bras Oftalmol 74(4):296-299CrossRefGoogle Scholar
  34. 34.
    Velikay M, Wedrich A, Stolba U, Datlinger P, Li Y, Binder S (1993) Experimental long-term vitreous replacement with purified and nonpurified perfluorodecalin. Am J Ophthalmol 116(5):565–570.  https://doi.org/10.1016/s0002-9394(14)73197-6 CrossRefGoogle Scholar
  35. 35.
    Sirimaharaj M, Balachandran C, Chan WC, Hunyor AP, Chang AA, Gregory-Roberts J et al (2005) Vitrectomy with short term postoperative tamponade using perfluorocarbon liquid for giant retinal tears. Br J Ophthalmol 89(9):1176–1179.  https://doi.org/10.1136/bjo.2004.065409 CrossRefGoogle Scholar
  36. 36.
    Eiger-Moscovich M, Gershoni A, Axer-Siegel R, Weinberger D, Ehrlich R (2017) Short-term vitreoretinal tamponade with heavy liquid following surgery for giant retinal tear. Curr Eye Res 42(7):1074–1078.  https://doi.org/10.1080/02713683.2016.1266664 CrossRefGoogle Scholar
  37. 37.
    Sigler EJ, Randolph JC, Calzada JI, Charles S (2013) 25-gauge pars plana vitrectomy with medium-term postoperative perfluoro-n-octane tamponade for inferior retinal detachment. Ophthalmic Surg Lasers Imaging Retina 44(1):34–40.  https://doi.org/10.3928/23258160-20121221-10 CrossRefGoogle Scholar
  38. 38.
    Figueroa MS, Casas DR (2014) Inflammation induced by perfluorocarbon liquid: intra- and postoperative use. Biomed Res Int 2014:907816.  https://doi.org/10.1155/2014/907816 CrossRefGoogle Scholar
  39. 39.
    Singh J, Ramaesh K, Wharton SB, Cormack G, Chawla HB (2001) Perfluorodecalin-induced intravitreal inflammation. Retina 21(3):247–251CrossRefGoogle Scholar
  40. 40.
    Sandner D, Herbrig E, Engelmann K (2007) High-density silicone oil (Densiron) as a primary intraocular tamponade: 12-month follow up. Graefes Arch Clin Exp Ophthalmol 245(8):1097.1105.  https://doi.org/10.1007/s00417-006-0496-y CrossRefGoogle Scholar
  41. 41.
    Joussen AM, Wong D (2008) The concept of heavy tamponades—chances and limitations. Graefes Arch Clin Exp Ophthalmol 246(9):1217–1224.  https://doi.org/10.1007/s00417-008-0861-0 CrossRefGoogle Scholar
  42. 42.
    Joussen AM, Rizzo S, Kirchhof B, Schrage N, Li X, Lente C et al (2011) Heavy silicone oil versus standard silicone oil in as vitreous tamponade in inferior PVR (HSO Study): interim analysis. Acta Ophthalmol 89(6):e483–e489.  https://doi.org/10.1111/j.1755-3768.2011.02139.x CrossRefGoogle Scholar
  43. 43.
    Dresp JH, Menz DH (2007) The phenomenon of “sticky” silicone oil. Graefes Arch Clin Exp Ophthalmol 245(6):863–868.  https://doi.org/10.1007/s00417-006-0450-z CrossRefGoogle Scholar
  44. 44.
    Liang Y, Kociok N, Leszczuk M, Hiebl W, Theisinger B, Lux A et al (2008) A cleaning solution for silicone intraocular lenses: “sticky silicone oil”. Br J Ophthalmol 92(11):1522–1527.  https://doi.org/10.1136/bjo.2008.143750 CrossRefGoogle Scholar
  45. 45.
    Veckeneer MA, Voogd S, Lindstedt EW, Menz DH, Meurs JC (2008) An epidemic of sticky silicone oil at the Rotterdam Eye Hospital. Patient review and chemical analyses. Graefes Arch Clin Exp Ophthalmol 246(6):917–922.  https://doi.org/10.1007/s00417-008-0768-9 CrossRefGoogle Scholar
  46. 46.
    Romano MR, Vallejo-Garcia JL, Parmeggiani F, Vito R, Vinciguerra P (2012) Interaction between perfluorcarbon liquid and heavy silicone oil: Risk factor for “sticky oil” formation. Curr Eye Res 37(7):563–566.  https://doi.org/10.3109/02713683.2012.669511 CrossRefGoogle Scholar
  47. 47.
    Garcia-Valenzuela E, Ito Y, Abrams GW (2004) Risk factors for retention of subretinal perfluorocarbon liquid in vitreoretinal surgery. Retina 24(5):746–752CrossRefGoogle Scholar
  48. 48.
    Tewari A, Eliott D, Singh CN, Garcia-Valenzuela E, Ito Y, Abrams GW (2009) Changes in retinal sensitivity from retained subretinal perfluorocarbon liquid. Retina 29(2):248–250.  https://doi.org/10.1097/IAE.0b013e318188c7ea CrossRefGoogle Scholar
  49. 49.
    Smith AG, Cost BM, Ehlers JP (2015) Intraoperative OCT-assisted subretinal perfluorocarbon liquid removal in the DISCOVER study. Ophthalmic Surg Lasers Imaging Retina 46(9):964–966.  https://doi.org/10.3928/23258160-20151008-10 CrossRefGoogle Scholar
  50. 50.
    Roth DB, Sears JE, Lewis H (2004) Removal of retained subfoveal perfluoro-n-octane liquid. Am J Ophthalmol 138(2):287–289.  https://doi.org/10.1016/j.ajo.2004.02.077 CrossRefGoogle Scholar
  51. 51.
    Saatci AO, Koçak N (2003) Retained submacular perfluorodecalin. Can J Ophthalmol 38(4):293–296CrossRefGoogle Scholar
  52. 52.
    Pan Q, Deng Y, Wu W, Zhao Z (2018) Surgical removal of subfoveal perfluorocarbon liquid using combined flute needle and vacuum aspiration in silicone oil-filled eyes: A novel technique to remove subfoveal PFCL. Indian J Ophthalmol 66(10):1463–1465.  https://doi.org/10.4103/ijo.IJO_1337_17 CrossRefGoogle Scholar
  53. 53.
    Liu W, Gao M, Liang X (2018) Management of subfoveal perfluorocarbon liquid: a review. Ophthalmologica 240(1):1–7.  https://doi.org/10.1159/000488118 CrossRefGoogle Scholar
  54. 54.
    Lai JC, Posstel EA, Mccuen BW (2003) Recovery of visual function after removal of chronic subfoveal perfluorocarbon liquid. Retina 23(6):868-870CrossRefGoogle Scholar
  55. 55.
    Kim JM, Woo SJ, Park KH, Chung H (2013) Surgical removal of retained subfoveal perfluorocarbon liquid through a therapeutic macular hole with intravitreal PFCL injection and gas tamponade. Korean J Ophthalmol 27(5):392–395.  https://doi.org/10.3341/kjo.2013.27.5.392 CrossRefGoogle Scholar
  56. 56.
    Quiroz-Mercado H, Suarez-Tatá L, Magdalenic R, Murillo-López S, García-Aguirre G, Guerrero-Naranjo J et al (2004) Perfluorocarbon perfused vitrectomy: animal studies. Am J Ophthalmol 137(2):287–293CrossRefGoogle Scholar
  57. 57.
    Velez-Montoya R, Guerrero-Naranjo JL, Garcia-Aguirre G, Morales-Cantón V, Fromow-Guerra J, Quiroz-Mercado H (2011) Perfluorocarbon-perfused 23 gauge three-dimensional vitrectomy for complicated diabetic tractional retinal detachment. Clin Ophthalmol 5:1709–1715.  https://doi.org/10.2147/OPTH.S26838 CrossRefGoogle Scholar
  58. 58.
    Quiroz-Mercado H, Guerrero-Naranjo J, Agurto-Rivera R, Leizaola-Fernández C, Suárez-Tatá L, Murillo-López S et al (2005) Perfluorocarbon-perfused vitrectomy: a new method for vitrectomy—a safety and feasibility study. Graefes Arch Clin Exp Ophthalmol 243(6):551–562.  https://doi.org/10.1007/s00417-004-1063-z CrossRefGoogle Scholar
  59. 59.
    Stalmans P, Pinxten AM, Wong DS (2015) Cohort safety and efficacy study of siluron2000 emulsificationresistant silicone oil and f4h5 in the treatment of full-thickness macular hole. Retina 35(12):2558–2566.  https://doi.org/10.1097/IAE.0000000000000647 CrossRefGoogle Scholar
  60. 60.
    Stappler T, Williams R, Wong D (2010) F4H5: A novel substance for the removal of silicone oil from intraocular lenses. Br J Ophthalmol 94(3):364–367.  https://doi.org/10.1136/bjo.2009.161489 CrossRefGoogle Scholar
  61. 61.
    Steven P, Schrems W, Krösser S, Schrage N, Kretz F, Kaercher T et al (2017) Semifluorinated alkane eye drops for treatment of dry eye disease due to meibomian gland disease. J Ocul Pharmacol Ther 33(9):678–685.  https://doi.org/10.1089/jop.2017.0042 CrossRefGoogle Scholar
  62. 62.
    Martínez-Castillo V, Zapata M, Boixadera A, Fonollosa A, García-Arumí J (2007) Pars Plana Vitrectomy, Laser Retinopexy, and Aqueous Tamponade for Pseudophakic Rhegmatogenous Retinal Detachment. Ophthalmology 114(2):297–302.  https://doi.org/10.1016/j.ophtha.2006.07.037 CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Augenklinik SulzbachKnappschaftsklinikum SaarSulzbach/SaarDeutschland
  2. 2.Klaus Heimann Eye Research InstituteSulzbach/SaarDeutschland

Personalised recommendations