Advertisement

Neue molekularpathologische Ansätze bei malignen Iristumoren

  • V. KakkasseryEmail author
  • A. M. Jünemann
  • B. O. Scheef
  • S. Grisanti
  • L. M. Heindl
Leitthema
  • 59 Downloads

Zusammenfassung

Hintergrund

Die molekularpathologische Forschung bietet neue Chancen für das diagnostische und therapeutische Management von malignen Iristumoren. Neben der einfachen Immunhistologie und Polymerasekettenreaktionsanalyse können weitere Untersuchungsformen wie die multiplexe ligationsabhängige Sondenamplifikation, die Mikrosatellitenanalyse oder das Next-Generation-Sequencing verschiedene Mutationen im Tumorgenom detektieren.

Fragestellung

Es erfolgt die Darstellung aktueller molekularpathologischer Ansätze bei malignen Iristumoren.

Methoden

Dieser Beitrag bietet eine Übersicht über die aktuelle Literatur, basierend auf einer PubMed-Recherche und der klinischen Erfahrung bei Iristumoren.

Ergebnisse

Exemplarisch werden für das Irismelanom, das Irislymphom und die Iriskarzinommetastase diagnostische Besonderheiten und zielgerichtete Behandlungsoptionen dargestellt. Beim Irismelanom scheinen insbesondere Mutationen im GNA11- oder GNAQ-Gen (in ca. 85 % der Fälle) von Bedeutung zu sein. Ebenso empfiehlt es sich, den Monosomie-3-Status bei diesen Patienten zu untersuchen. Beim Irislymphom ist die molekularpathologische Aufarbeitung vor der exakten Diagnosestellung elementar. Ebenso ist die Detektion von Mutationen auf MYD88, BRAF, KLF2, ID3, TCF3, STAT3, RHo, TET2, IDH2, CXCR4, CD79B und DNMT3A hilfreich. Insbesondere der Nachweis des CD20-Antigens zieht eine therapeutische Relevanz nach sich, da diese Lymphome gut auf Rituximab, eine CD20-Antikörpertherapie, ansprechen. Auch bei Iriskarzinommetastasen sind Untersuchungen auf Mutationen hilfreich, da dann eine zielgerichtete Therapie möglich erscheint.

Schlussfolgerung

Die Molekularpathologie wird auch bei Iristumoren künftig unerlässlich werden, da sie den Schlüssel zu einer personalisierten Therapie darstellt.

Schlüsselwörter

Zielgerichtete Therapie Molekularpathologische Diagnostik Irismelanom Irislymphom Iriskarzinommetastase 

New molecular pathological strategies for malignant iris tumors

Abstract

Background

Molecular pathological research offers new chances for the diagnostic and therapeutic management of malignant iris tumors. Besides immunohistological and polymerase chain reaction analyses further techniques, such as multiplex ligation-dependent probe amplification, microsatellite analyses and next-generation sequencing are able to detect various mutations in the tumor genome.

Objective

An up to date review of new molecular pathological strategies for malignant iris tumors was carried out.

Methods

This article provides a review of the recent literature based on a PubMed search and clinical experience with iris tumors.

Results

The diagnostic characteristics and targeted treatment options are presented, exemplified by iris melanoma and iris carcinoma metastases. In iris melanomas, mutations in the GNA11 and GNAQ genes (in approximately 85% of the cases) seem to be important. Furthermore, the monosomy-3 status should be investigated in these tumors. In iris lymphomas, molecular pathological analyses are essential for an exact diagnosis. Detection of mutations in MYD88, BRAF, KLF2, ID3, TCF3, STAT3, RHo, TET2, IDH2, CXCR4, CD79B and DNMT3A are helpful. In particular, the detection of the CD20 antigen is of therapeutic relevance because this lymphoma subgroup responds well to rituximab, a CD20 antibody treatment. In iris carcinoma metastases, investigations for mutations are helpful because then a targeted treatment seems to be possible.

Conclusion

Molecular pathological analyses will become essential in the future management of iris tumors because they play a key role towards a personalized treatment approach.

Keywords

Targeted treatment Molecular pathological diagnostics Iris melanoma Iris lymphoma Iris carcinoma metastases 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

V. Kakkassery, A.M. Jünemann, B.O. Scheef, S. Grisanti und L.M. Heindl geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Alle Patienten, die über Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts zu identifizieren sind, haben hierzu ihre schriftliche Einwilligung gegeben. Im Falle von nicht mündigen Patienten liegt die Einwilligung eines Erziehungsberechtigten oder des gesetzlich bestellten Betreuers vor.

Literatur

  1. 1.
    Chronopoulos A et al (2014) Small incision iris tumour biopsy using a cavernous sampling forceps. Br J Ophthalmol 98(11):1539–1542CrossRefGoogle Scholar
  2. 2.
    Gokhale R et al (2015) Diagnostic fine-needle aspiration biopsy for Iris melanoma. Asia Pac J Ophthalmol (Phila) 4(2):89–91CrossRefGoogle Scholar
  3. 3.
    Chong CF et al (2014) Conservative biopsy excision and management of a large iris melanoma. Clin Exp Optom 97(3):278–279CrossRefGoogle Scholar
  4. 4.
    Heindl LM et al (2017) Block excision of iridociliary tumors enables molecular profiling and immune vaccination. Ophthalmology 124(2):268–270CrossRefGoogle Scholar
  5. 5.
    Mor JM, Koch KR, Heindl LM (2017) Diagnosis and therapy of Iris lesions. Klin Monbl Augenheilkd 234(12):1541–1554CrossRefGoogle Scholar
  6. 6.
    Petousis V, Finger PT, Milman T (2011) Anterior segment tumor biopsy using an aspiration cutter technique: clinical experience. Am J Ophthalmol 152(5):771–775e1CrossRefGoogle Scholar
  7. 7.
    Osterlind A (1987) Trends in incidence of ocular malignant melanoma in Denmark 1943–1982. Int J Cancer 40(2):161–164CrossRefGoogle Scholar
  8. 8.
    McLaughlin CC et al (2005) Incidence of noncutaneous melanomas in the U.S. Cancer 103(5):1000–1007CrossRefGoogle Scholar
  9. 9.
    Singh AD, Topham A (2003) Incidence of uveal melanoma in the United States: 1973–1997. Ophthalmology 110(5):956–961CrossRefGoogle Scholar
  10. 10.
    Singh AD, Turell ME, Topham AK (2011) Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology 118(9):1881–1885CrossRefGoogle Scholar
  11. 11.
    Hu DN et al (2005) Population-based incidence of uveal melanoma in various races and ethnic groups. Am J Ophthalmol 140(4):612–617CrossRefGoogle Scholar
  12. 12.
    Vajdic CM et al (2003) Incidence of ocular melanoma in Australia from 1990 to 1998. Int J Cancer 105(1):117–122CrossRefGoogle Scholar
  13. 13.
    Damato BE, Coupland SE (2012) Differences in uveal melanomas between men and women from the British Isles. Eye (Lond) 26(2):292–299CrossRefGoogle Scholar
  14. 14.
    Shields CL et al (2012) Clinical spectrum and prognosis of uveal melanoma based on age at presentation in 8,033 cases. Retina 32(7):1363–1372CrossRefGoogle Scholar
  15. 15.
    Shields CL et al (2013) Iris nevus growth into melanoma: analysis of 1611 consecutive eyes: the ABCDEF guide. Ophthalmology 120(4):766–772CrossRefGoogle Scholar
  16. 16.
    Shields CL et al (2001) Iris melanoma: risk factors for metastasis in 169 consecutive patients. Ophthalmology 108(1):172–178CrossRefGoogle Scholar
  17. 17.
    Khan S et al (2012) Clinical and pathologic characteristics of biopsy-proven iris melanoma: a multicenter international study. Arch Ophthalmol 130(1):57–64CrossRefGoogle Scholar
  18. 18.
    Damato B (2012) Progress in the management of patients with uveal melanoma. The 2012 Ashton Lecture. Eye (Lond) 26(9):1157–1172CrossRefGoogle Scholar
  19. 19.
    Grossniklaus HE et al (1995) Histopathology, morphometry, and nuclear DNA content of iris melanocytic lesions. Invest Ophthalmol Vis Sci 36(3):745–750PubMedGoogle Scholar
  20. 20.
    Sisley K et al (1998) Cytogenetics of iris melanomas: disparity with other uveal tract melanomas. Cancer Genet Cytogenet 101(2):128–133CrossRefGoogle Scholar
  21. 21.
    Shields CL et al (2009) Metastasis of uveal melanoma millimeter-by-millimeter in 8033 consecutive eyes. Arch Ophthalmol 127(8):989–998CrossRefGoogle Scholar
  22. 22.
    Shields CL et al (2011) Cytogenetic testing of iris melanoma using fine needle aspiration biopsy in 17 patients. Retina 31(3):574–580CrossRefGoogle Scholar
  23. 23.
    Mensink HW et al (2011) Chromosomal aberrations in iris melanomas. Br J Ophthalmol 95(3):424–428CrossRefGoogle Scholar
  24. 24.
    Harbour JW et al (2013) Gene expressing profiling of iris melanomas. Ophthalmology 120(1):213e1–213e3CrossRefGoogle Scholar
  25. 25.
    Prescher G, Bornfeld N, Becher R (1994) Two subclones in a case of uveal melanoma. Relevance of monosomy 3 and multiplication of chromosome 8q. Cancer Genet Cytogenet 77(2):144–146CrossRefGoogle Scholar
  26. 26.
    Prescher G et al (1996) Prognostic implications of monosomy 3 in uveal melanoma. Lancet 347(9010):1222–1225CrossRefGoogle Scholar
  27. 27.
    White VA, Horsman DE, Rootman J (1995) Cytogenetic characterization of an iris melanoma. Cancer Genet Cytogenet 82(1):85–87CrossRefGoogle Scholar
  28. 28.
    Krishna Y et al (2016) Genetic findings in treatment-naive and proton-beam-radiated iris melanomas. Br J Ophthalmol 100(7):1012–1016CrossRefGoogle Scholar
  29. 29.
    Scholz SL et al (2017) Frequent GNAQ, GNA11, and EIF1AX mutations in Iris melanoma. Invest Ophthalmol Vis Sci 58(9):3464–3470CrossRefGoogle Scholar
  30. 30.
    van Poppelen NM et al (2018) Genetic background of iris melanomas and iris melanocytic tumors of uncertain malignant potential. Ophthalmology 125(6):904–912CrossRefGoogle Scholar
  31. 31.
    Scholz SL et al (2018) Re: van Poppelen et al.: Genetic background of iris melanomas and iris melanocytic tumors of uncertain malignant potential (Ophthalmology. 2018;125:904–912). Ophthalmology 125(11):e78–e79CrossRefGoogle Scholar
  32. 32.
    Wallander ML et al (2011) KIT mutations in ocular melanoma: frequency and anatomic distribution. Mod Pathol 24(8):1031–1035CrossRefGoogle Scholar
  33. 33.
    Shoushtari AN, Carvajal RD (2014) GNAQ and GNA11 mutations in uveal melanoma. Melanoma Res 24(6):525–534CrossRefGoogle Scholar
  34. 34.
    Metz CH et al (2013) Uveal melanoma: current insights into clinical relevance of genetic testing. Klin Monbl Augenheilkd 230(7):686–691CrossRefGoogle Scholar
  35. 35.
    Henriquez F et al (2007) The T1799A BRAF mutation is present in iris melanoma. Invest Ophthalmol Vis Sci 48(11):4897–4900CrossRefGoogle Scholar
  36. 36.
    Karydis I et al (2016) Clinical activity and safety of pembrolizumab in Ipilimumab pre-treated patients with uveal melanoma. Oncoimmunology 5(5):e1143997CrossRefGoogle Scholar
  37. 37.
    Schuler-Thurner B et al (2015) Immunotherapy of uveal melanoma: vaccination against cancer. Multicenter adjuvant phase 3 vaccination study using dendritic cells laden with tumor RNA for large newly diagnosed uveal melanoma. Ophthalmologe 112(12):1017–1021CrossRefGoogle Scholar
  38. 38.
    Kakkassery V, Wunderlich MI (2016) Ocular lymphomas. Klin Monbl Augenheilkd 233(10):1175–1191CrossRefGoogle Scholar
  39. 39.
    Coupland SE, Damato B (2006) Lymphomas involving the eye and the ocular adnexa. Curr Opin Ophthalmol 17:523–531PubMedGoogle Scholar
  40. 40.
    Coupland SE (2013) Molecular pathology of lymphoma. Eye (Lond) 27(2):180–189CrossRefGoogle Scholar
  41. 41.
    Coupland SE, Damato B (2006) Lymphomas involving the eye and the ocular adnexa. Curr Opin Ophthalmol 17(6):523–531PubMedGoogle Scholar
  42. 42.
    Rosenquist R et al (2016) Clinical impact of recurrently mutated genes on lymphoma diagnostics: state-of-the-art and beyond. Haematologica 101(9):1002–1009CrossRefGoogle Scholar
  43. 43.
    Witkowska M, Smolewski P (2016) Development of anti-CD20 antigen-targeting therapies for B‑cell lymphoproliferative malignancies—the state of the art. Curr Drug Targets 17(9):1072–1082CrossRefGoogle Scholar
  44. 44.
    Shields CL et al (2018) Uveal metastasis: clinical features and survival outcome of 2214 tumors in 1111 patients based on primary tumor origin. Middle East Afr J Ophthalmol 25(2):81–90CrossRefGoogle Scholar
  45. 45.
    Wunderlich MI et al (2016) Unusual masquerade of an ocular carcinoma metastasis. Ophthalmologe 113(8):690–693CrossRefGoogle Scholar
  46. 46.
    Flaherty KT et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367(18):1694–1703CrossRefGoogle Scholar
  47. 47.
    Petrelli F et al (2012) Relationship between skin rash and outcome in non-small-cell lung cancer patients treated with anti-EGFR tyrosine kinase inhibitors: a literature-based meta-analysis of 24 trials. Lung Cancer 78(1):8–15CrossRefGoogle Scholar
  48. 48.
    Petrelli F et al (2012) Biological agents alone or in combination as second-line therapy in advanced non-small-cell lung cancer: systematic review of randomized studies. Expert Rev Anticancer Ther 12(10):1299–1312CrossRefGoogle Scholar
  49. 49.
    Cai J et al (2013) Correlation of bevacizumab-induced hypertension and outcomes of metastatic colorectal cancer patients treated with bevacizumab: a systematic review and meta-analysis. World J Surg Oncol 11:306CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • V. Kakkassery
    • 1
    Email author
  • A. M. Jünemann
    • 2
  • B. O. Scheef
    • 2
  • S. Grisanti
    • 1
  • L. M. Heindl
    • 3
    • 4
  1. 1.Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus LübeckUniversität zu LübeckLübeckDeutschland
  2. 2.Klinik und Poliklinik für AugenheilkundeUniversitätsmedizin RostockRostockDeutschland
  3. 3.Zentrum für AugenheilkundeUniversitätsklinikum zu KölnKölnDeutschland
  4. 4.Centrum für Integrierte Onkologie (CIO) Köln-BonnKöln-BonnDeutschland

Personalised recommendations