Advertisement

Der Ophthalmologe

, Volume 115, Issue 12, pp 1021–1027 | Cite as

Bildgebung und molekulargenetische Diagnostik zur Charakterisierung von Netzhautdystrophien

  • J. Birtel
  • M. Gliem
  • F. G. Holz
  • P. Herrmann
Leitthema
  • 112 Downloads

Zusammenfassung

Hereditäre Netzhautdystrophien sind eine sowohl klinisch als auch genetisch heterogene Erkrankungsgruppe. Eine umfassende Charakterisierung schließt funktionelle sowie hochauflösende multimodale Imaging-Methoden ein. Fortschritte in der molekulargenetischen Diagnostik erlauben eine zunehmende Differenzierung von Netzhautdystrophien gemäß ihrer spezifischen genetischen Krankheitsursache, was insbesondere vor dem Hintergrund neuer aufkommender Therapieansätze von Bedeutung ist. Vor allem das „targeted next generation sequencing“ (NGS) ist hierbei eine effiziente Methode, die insbesondere auch bei der Aufdeckung seltener oder potenziell neuer Mutationen hilfreich sein kann. Zur Interpretation der molekulargenetischen Befunde ist eine enge Kooperation zwischen Augenärzten und Humangenetikern essenziell.

Schlüsselwörter

Next Generation Sequencing Phänotypisierung Genotypisierung Genetische Erkrankungen Fundusautofluoreszenz 

Imaging and molecular genetic diagnostics for the characterization of retinal dystrophies

Abstract

Hereditary retinal dystrophies represent a genetically and clinically heterogeneous group of diseases. A comprehensive characterization constitutes functional and high-resolution multimodal imaging. With the advent of novel treatment options the detection of the underlying gene causing the disease is becoming more important. Technical advances in molecular genetic diagnostics enable a classification of retinal dystrophies depending on the specific genetic cause of the disease, which is important particularly against the background of newly emerging therapy approaches. Targeted next generation sequencing (NGS), in particular is now an efficient method to accomplish this and can be especially helpful to identify rare and potentially new disease-causing variants. For the interpretation of the molecular genetic results a close collaboration between ophthalmologists and geneticists is essential.

Keywords

Next generation sequencing Phenotyping Genotyping Genetic disorders Fundus autofluorescence 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Birtel, M. Gliem und P. Herrmann erhielten Forschungsförderungen von Heidelberg Engineering, Optos und CenterVue. F.G. Holz erhielt Forschungsförderungen von Genentech/Roche, Bayer, Boehringer-Ingelheim, Novartis, Allergan, Heidelberg Engineering, Nightstar, CenterVue und Optos und ist als Berater für Genentech/Roche, Bayer, Boehringer-Ingelheim, Novartis, Allergan, Heidelberg Engineering, Apellis und LIN Bioscience tätig.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Sohocki MM, Daiger SP, Bowne SJ et al (2001) Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 17(1):42–51CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Finger RP, Fimmers R, Holz FG, Scholl HP (2011) Prevalence and causes of registered blindness in the largest federal state of Germany. Br J Ophthalmol 95(8):1061–1067CrossRefPubMedGoogle Scholar
  3. 3.
    Krumpaszky HG, Ludtke R, Mickler A et al (1999) Blindness incidence in Germany. A population-based study from Wurttemberg-Hohenzollern. Ophthalmologica 213(3):176–182CrossRefPubMedGoogle Scholar
  4. 4.
    Kellner U, Tillack H, Renner AB (2004) Hereditäre Netzhaut-Aderhaut-Dystrophien Teil 1: Pathogenese, Diagnostik, Therapie, Patientenbetreuung. Ophthalmologe 101(3):307–319CrossRefPubMedGoogle Scholar
  5. 5.
    Kellner U, Renner AB, Tillack H (2004) Hereditäre Netzhaut-Aderhaut-Dystrophien Teil 2: Differenzialdiagnose. Ophthalmologe 101(4):397–412CrossRefPubMedGoogle Scholar
  6. 6.
    Sparrow JR, Gregory-Roberts E, Yamamoto K et al (2012) The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res 31(2):121–135CrossRefPubMedGoogle Scholar
  7. 7.
    Delori FC, Staurenghi G, Arend O et al (1995) In vivo measurement of lipofuscin in Stargardt’s disease—fundus flavimaculatus. Invest Ophthalmol Vis Sci 36(11):2327–2331PubMedGoogle Scholar
  8. 8.
    Spaide R (2008) Autofluorescence from the outer retina and subretinal space: hypothesis and review. Retina 28(1):5–35CrossRefPubMedGoogle Scholar
  9. 9.
    Ach T, Bermond K (2017) Autofluoreszenz des humanen retinalen Pigmentepithels in der normalen Alterung und bei altersbedingter Makuladegeneration: Histologie und Klinik. Klin Monbl Augenheilkd.  https://doi.org/10.1055/s-0043-109891 CrossRefPubMedGoogle Scholar
  10. 10.
    Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809CrossRefPubMedGoogle Scholar
  11. 11.
    Eisenberger T, Neuhaus C, Khan AO et al (2013) Increasing the yield in targeted next-generation sequencing by implicating CNV analysis, non-coding exons and the overall variant load: the example of retinal dystrophies. PLoS ONE 8(11):e78496CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Murakami T, Akimoto M, Ooto S et al (2008) Association between abnormal autofluorescence and photoreceptor disorganization in retinitis pigmentosa. Am J Ophthalmol 145(4):687–694CrossRefPubMedGoogle Scholar
  14. 14.
    Robson AG, Tufail A, Fitzke F et al (2011) Serial imaging and structure-function correlates of high-density rings of fundus autofluorescence in retinitis pigmentosa. Retina 31(8):1670–1679CrossRefPubMedGoogle Scholar
  15. 15.
    Robson AG, Michaelides M, Saihan Z et al (2008) Functional characteristics of patients with retinal dystrophy that manifest abnormal parafoveal annuli of high density fundus autofluorescence; a review and update. Doc Ophthalmol 116(2):79–89CrossRefPubMedGoogle Scholar
  16. 16.
    Lima LH, Burke T, Greenstein VC et al (2012) Progressive constriction of the hyperautofluorescent ring in retinitis pigmentosa. Am J Ophthalmol 153(4):718–727.e2CrossRefPubMedGoogle Scholar
  17. 17.
    Duncker T, Tabacaru MR, Lee W et al (2013) Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa. Invest Ophthalmol Vis Sci 54(1):585–591CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Popovic P, Jarc-Vidmar M, Hawlina M (2005) Abnormal fundus autofluorescence in relation to retinal function in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 243(10):1018–1027CrossRefPubMedGoogle Scholar
  19. 19.
    Aizawa S, Mitamura Y, Hagiwara A et al (2010) Changes of fundus autofluorescence, photoreceptor inner and outer segment junction line, and visual function in patients with retinitis pigmentosa. Clin Exp Ophthalmol 38(6):597–604CrossRefPubMedGoogle Scholar
  20. 20.
    Michaelides M, Holder GE, Hunt DM et al (2005) A detailed study of the phenotype of an autosomal dominant cone-rod dystrophy (CORD7) associated with mutation in the gene for RIM1. Br J Ophthalmol 89(2):198–206CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Downes SM, Holder GE, Fitzke FW et al (2001) Autosomal dominant cone and cone-rod dystrophy with mutations in the guanylate cyclase activator 1A gene-encoding guanylate cyclase activating protein-1. Arch Ophthalmol 119(1):96–105PubMedGoogle Scholar
  22. 22.
    Scholl HP, Chong NH, Robson AG et al (2004) Fundus autofluorescence in patients with leber congenital amaurosis. Invest Ophthalmol Vis Sci 45(8):2747–2752CrossRefPubMedGoogle Scholar
  23. 23.
    Tsang SH, Vaclavik V, Bird AC et al (2007) Novel phenotypic and genotypic findings in X‑linked retinoschisis. Arch Ophthalmol 125(2):259–267CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fleckenstein M, Charbel Issa P, Fuchs HA et al (2009) Discrete arcs of increased fundus autofluorescence in retinal dystrophies and functional correlate on microperimetry. Eye (Lond) 23(3):567–575CrossRefGoogle Scholar
  25. 25.
    Poloschek CM, Hansen LL, Bach M (2008) Annular fundus autofluorescence abnormality in a case of macular dystrophy. Doc Ophthalmol 116(2):91–95CrossRefPubMedGoogle Scholar
  26. 26.
    Wegscheider E, Preising MN, Lorenz B (2004) Fundus autofluorescence in carriers of X‑linked recessive retinitis pigmentosa associated with mutations in RPGR, and correlation with electrophysiological and psychophysical data. Graefes Arch Clin Exp Ophthalmol 242(6):501–511CrossRefPubMedGoogle Scholar
  27. 27.
    Renner AB, Kellner U (2016) Hereditäre Makuladystrophien. Klin Monbl Augenheilkd 233(10):1124–1141CrossRefPubMedGoogle Scholar
  28. 28.
    Reiniger JL, Domdei N, Pfau M et al (2017) Potential of adaptive optics for the diagnostic evaluation of hereditary retinal diseases. Klin Monbl Augenheilkd 234(3):311–319CrossRefPubMedGoogle Scholar
  29. 29.
    Battaglia Parodi M, Arrigo A, MacLaren RE et al (2018) Vascular alterations revealed with optical coherence tomography angiography in patients with choroideremia. Retina.  https://doi.org/10.1097/iae.0000000000002118 CrossRefPubMedGoogle Scholar
  30. 30.
    Battaglia Parodi M, Cicinelli MV, Rabiolo A et al (2017) Vessel density analysis in patients with retinitis pigmentosa by means of optical coherence tomography angiography. Br J Ophthalmol 101(4):428–432CrossRefPubMedGoogle Scholar
  31. 31.
    Battaglia Parodi M, Cicinelli MV, Rabiolo A et al (2017) Vascular abnormalities in patients with Stargardt disease assessed with optical coherence tomography angiography. Br J Ophthalmol 101(6):780–785CrossRefPubMedGoogle Scholar
  32. 32.
    Charbel Issa P, Barnard AR, Herrmann P et al (2015) Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. P Natl Acad Sci USA 112(27):8415–8420CrossRefGoogle Scholar
  33. 33.
    Russell S, Bennett J, Wellman JA et al (2017) Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390(10097):849–860CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    MacLaren RE, Groppe M, Barnard AR et al (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383(9923):1129–1137CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Edwards TL, Jolly JK, Groppe M et al (2016) Visual acuity after retinal gene therapy for choroideremia. N Engl J Med 374(20):1996–1998CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Scholl HP, Strauss RW, Singh MS et al (2016) Emerging therapies for inherited retinal degeneration. Sci Transl Med 8(368):368rv6CrossRefPubMedGoogle Scholar
  37. 37.
    Pro Retina Deutschland e. V. (2016) Stellungnahme des Arbeitskreises Klinische Fragen (AKF) des Wissenschaftlich-Medizinischen Beirats der Pro Retina Deutschland e. V. Stellungnahme zur Gabe von Vitamin A bei erblichen Netzhautdystrophien. https://www.pro-retinade/forschungsfoerderung/wissenschaftliche-beratungsgremien/empfehlungen/vitamin-a-bei-m-stargardt-und-zsd. Zugegriffen: 15. Juni 2018Google Scholar
  38. 38.
    O’Sullivan J, Mullaney BG, Bhaskar SS et al (2012) A paradigm shift in the delivery of services for diagnosis of inherited retinal disease. J Med Genet 49(5):322–326CrossRefPubMedGoogle Scholar
  39. 39.
    Shanks ME, Downes SM, Copley RR et al (2013) Next-generation sequencing (NGS) as a diagnostic tool for retinal degeneration reveals a much higher detection rate in early-onset disease. Eur J Hum Genet 21(3):274–280CrossRefPubMedGoogle Scholar
  40. 40.
    Birtel J, Eisenberger T, Gliem M et al (2018) Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci Rep 8(1):4824CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Glockle N, Kohl S, Mohr J et al (2014) Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur J Hum Genet 22(1):99–104CrossRefPubMedGoogle Scholar
  42. 42.
    Birtel J, Gliem M, Mangold E et al (2017) Novel insights into the phenotypical spectrum of KIF11-associated retinopathy, including a new form of retinal ciliopathy. Invest Ophthalmol Vis Sci 58(10):3950–3959CrossRefPubMedGoogle Scholar
  43. 43.
    Boulanger-Scemama E, El Shamieh S, Demontant V et al (2015) Next-generation sequencing applied to a large French cone and cone-rod dystrophy cohort: mutation spectrum and new genotype-phenotype correlation. Orphanet J Rare Dis 10:85CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Stone EM, Andorf JL, Whitmore SS et al (2017) Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmology 124(9):1314–1331CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bolz HJ (2018) Genetische Diagnostik von Netzhautdystrophien. Ophthalmologe.  https://doi.org/10.1007/s00347-018-0762-5 (ePub ahead of print)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • J. Birtel
    • 1
    • 2
  • M. Gliem
    • 1
    • 2
    • 3
    • 4
  • F. G. Holz
    • 1
    • 2
  • P. Herrmann
    • 1
    • 2
  1. 1.Universitäts-Augenklinik BonnUniversität BonnBonnDeutschland
  2. 2.Zentrum für seltene Erkrankungen Bonn (ZSEB)Universität BonnBonnDeutschland
  3. 3.Oxford Eye HospitalOxford University Hospitals NHS Foundation TrustOxfordGroßbritannien
  4. 4.Nuffield Laboratory of Ophthalmology, Department of Clinical NeurosciencesUniversity of OxfordOxfordGroßbritannien

Personalised recommendations