Advertisement

Der Ophthalmologe

, Volume 115, Issue 7, pp 566–572 | Cite as

Chemokine in der Augenheilkunde

  • T. Bleul
  • G. Schlunck
  • T. Reinhard
  • T. Lapp
Übersichten
  • 128 Downloads

Zusammenfassung

Chemokine sind chemotaktisch wirksame Zytokine, die einerseits die Verteilung von Immunzellen im Körper koordinieren und andererseits die Migration von Leukozyten bei malignen und inflammatorischen Prozessen regulieren. Bei den Chemokinen handelt es sich um eine heterogene Gruppe kurzkettiger Proteine, die anhand ihrer Struktur in verschiedene Untergruppen eingeteilt werden. Neben den Chemokinen (Liganden) existieren verschiedene Chemokinrezeptoren. Komplexität erhält das Chemokinsystem aufgrund einer hohen Redundanz bei den Liganden-Rezeptoren-Interaktionen: Ein Ligand kann an verschiedene Rezeptoren binden – ein Rezeptor kann mit verschiedenen Liganden interagieren. Bezüglich der Rezeptoren weisen unterschiedliche Immunzellen ein charakteristisches Rezeptorexpressionsmuster auf, das u. a. für eine immunologische Charakterisierung von Leukozyten genutzt werden kann. Wichtige Arbeiten in den Grundlagenwissenschaften führen zu einem besseren Verständnis für das Chemokinsystem. Vermehrt wird auch eine essenzielle Bedeutung des Chemokinsystems bei verschiedenen Erkrankungen des vorderen und hinteren Augenabschnitts ersichtlich. Die nachfolgende Übersicht beleuchtet einzelne klinische Aspekte und grundlegende wissenschaftliche Arbeiten im Kontext der „Chemokine in der Augenheilkunde“.

Schlüsselwörter

Zytokine Augenerkrankungen Allergische Konjunktivitis Hornhauttransplantation Altersbedingte Makuladegeneration 

Chemokines in ophthalmology

Abstract

Chemokines are chemotactically active cytokines, which coordinate the distribution of immune cells within the body and also regulate the migration of leukocytes in malignant and inflammatory processes. Chemokines are a heterogeneous group of short-chain proteins that are divided into different subgroups on the basis of their structure. In addition to the chemokines (ligands) various chemokine receptors also exist. The chemokine system is given its complexity by the high redundancy of ligand-receptor interactions: one single ligand can bind to different receptors and a single receptor can interact with different ligands. In terms of receptors, distinct immune cell types have characteristic receptor expression patterns, which can be used for the immunological characterization of leukocytes. Important basic research is currently leading to a better understanding of the chemokine system. The essential importance of the chemokine system in various diseases of the anterior and posterior eye segments is becoming increasingly apparent. The following synopsis explains the individual clinical aspects as well as the underlying scientific work in the context of “chemokines in ophthalmology”.

Keywords

Cytokines Eye disease Allergic conjunctivitis Corneal transplantation Age-related macular degeneration 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Bleul, G. Schlunck, T. Reinhard und T. Lapp geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Proudfoot AEI (2002) Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2:106–115CrossRefPubMedGoogle Scholar
  2. 2.
    Qin S et al (1998) The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 101:746–754CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702CrossRefPubMedGoogle Scholar
  4. 4.
    Fernandez EJ, Lolis E (2002) Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 42:469–499CrossRefPubMedGoogle Scholar
  5. 5.
    Murphy PM et al (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176PubMedGoogle Scholar
  6. 6.
    Lee SH, Dominguez R (2010) Regulation of actin cytoskeleton dynamics in cells. Mol Cells 29:311–325CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Murdoch C, Finn A (2000) Chemokine receptors and their role in inflammation and infectious diseases. Blood 95:3032–3043PubMedGoogle Scholar
  8. 8.
    Patel J, Channon KM, McNeill E (2013) The downstream regulation of chemokine receptor signalling: implications for atherosclerosis. Mediators Inflamm.  https://doi.org/10.1155/2013/459520 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ali A et al (2014) Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes. Front Genet.  https://doi.org/10.3389/fgene.2014.00348 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Saban DR (2014) The chemokine receptor CCR7 expressed by dendritic cells: a key player in corneal and ocular surface inflammation. Ocul Surf 12:87–99CrossRefPubMedGoogle Scholar
  11. 11.
    Schlereth S, Lee HS, Khandelwal P, Saban DR (2012) Blocking CCR7 at the ocular surface impairs the pathogenic contribution of dendritic cells in allergic conjunctivitis. Am J Pathol 180(6):2351–2360.  https://doi.org/10.1016/j.ajpath.2012.02.015 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Förster R et al (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33CrossRefPubMedGoogle Scholar
  13. 13.
    Ohl L et al (2004) CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21:279–288CrossRefPubMedGoogle Scholar
  14. 14.
    Martín-Fontencha A et al (2003) Regulation of dendritic cell migration to the draining lymph node. J Exp Med 198(4):615.  https://doi.org/10.1084/jem.20030448 (http://jem.rupress.org/content/198/4/615.long)CrossRefGoogle Scholar
  15. 15.
    Mathew R, Zaki AM, Galatowicz G, Calder V, Saban D (2013) CCR7 expression profiles in conjunctival biopsies from seasonal allergic conjunctivtis patients following challenge. Invest Ophthalmol Vis Sci 54:2549–2549Google Scholar
  16. 16.
    Niederkorn JY et al (2006) Desiccating stress induces T cell-mediated Sjögren’s syndrome-like lacrimal keratoconjunctivitis. J Immunol.  https://doi.org/10.4049/jimmunol.176.7.3950 CrossRefPubMedGoogle Scholar
  17. 17.
    Kodati S et al (2014) CCR7 is critical for the induction and maintenance of Th17 immunity in dry eye disease. Invest Ophthalmol Vis Sci 55:5871–5877CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yamagami S, Dana MR (2001) The critical role of lymph nodes in corneal alloimmunization and graft rejection. Invest Ophthalmol Vis Sci 42:1293–1298PubMedGoogle Scholar
  19. 19.
    Yamagami S, Dana MR, Tsuru T (2002) Draining lymph nodes play an essential role in alloimmunity generated in response to high-risk corneal transplantation. Cornea 21:405–409CrossRefPubMedGoogle Scholar
  20. 20.
    Hos D et al (2016) Blockade of CCR7 leads to decreased dendritic cell migration to draining lymph nodes and promotes graft survival in low-risk corneal transplantation. Exp Eye Res.  https://doi.org/10.1016/j.exer.2015.12.004 PubMedCrossRefGoogle Scholar
  21. 21.
    Lapp T et al (2015) Identification of therapeutic targets of inflammatory monocyte recruitment to modulate the allogeneic injury to donor cornea. Invest Ophthalmol Vis Sci.  https://doi.org/10.1167/iovs.15-16941 PubMedCrossRefGoogle Scholar
  22. 22.
    Reinhard T, Bocking A, Pomjanski N, Sundmacher R (2002) Immune cells in the anterior chamber of patients with immune reactions after penetrating keratoplasty. Cornea 21:56–61CrossRefPubMedGoogle Scholar
  23. 23.
    Takeda A et al (2009) CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460(7252):225–230.  https://doi.org/10.1038/nature08151 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mizutani T, Ashikari M, Tokoro M, Nozaki M, Ogura Y (2013) Suppression of laser-induced choroidal neovascularization by a CCR3 antagonist. Invest Ophthalmol Vis Sci.  https://doi.org/10.1167/iovs.11-9095 PubMedCrossRefGoogle Scholar
  25. 25.
    Nagai N et al (2015) Novel CCR3 antagonists are effective mono- and combination inhibitors of choroidal neovascular growth and vascular permeability. Am J Pathol.  https://doi.org/10.1016/j.ajpath.2015.04.029 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wang H et al (2016) Retinal inhibition of CCR3 induces retinal cell death in a murine model of choroidal neovascularization. PLOS ONE.  https://doi.org/10.1371/journal.pone.0157748 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li Y et al (2011) CCR3 and choroidal neovascularization. PLOS ONE 6:2–9Google Scholar
  28. 28.
    Zhou W‑J et al (2012) Inhibitory effect of CCR3 signal on alkali-induced corneal neuvascularisation. Int J Ophthalmol 5(3):251–257.  https://doi.org/10.3980/j.issn.2222-3959.2012.03.01 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2017

Authors and Affiliations

  1. 1.Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Medizinische FakultätAlbert-Ludwigs-Universität FreiburgFreiburgDeutschland

Personalised recommendations