Kidney regeneration approaches for translation

  • Heejo Yang
  • Anthony Atala
  • James J. YooEmail author
Topic Paper


The increase in the incidence of chronic kidney diseases that progress to end-stage renal disease has become a significant health problem worldwide. While dialysis can maintain and prolong survival, the only definitive treatment that can restore renal function is transplantation. Unfortunately, many of these patients die waiting for transplantable kidneys due to the severe shortage of donor organs. Tissue engineering and regenerative medicine approaches have been applied in recent years to develop viable therapies that could provide solutions to these patients. Cell-based and cell-free approaches have been proposed to address the challenges associated with chronic kidney diseases. Strategies and progress toward developing alternative therapeutic options will be reviewed.


Kidney Chronic kidney disease Regenerative medicine Cell therapy 


Author contributions

HY: literature search and manuscript writing. AA: manuscript review and editing. JJY: manuscript writing and editing.

Compliance with ethical standards

Conflicts of interest

The author declares that they have no competing interests.

Research involving human participants and/or animals



  1. 1.
    Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB et al (2017) Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet (London, England). 390(10105):1888–1917CrossRefGoogle Scholar
  2. 2.
    Hart A, Smith JM, Skeans MA, Gustafson SK, Wilk AR, Robinson A et al (2018) OPTN/SRTR 2016 annual data report: kidney. Am J Transpl 18:18–113CrossRefGoogle Scholar
  3. 3.
    Saran R, Robinson B, Abbott KC, Agodoa LYC, Bhave N, Bragg-Gresham J et al (2018) US renal data system 2017 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis 71(3:Suppl1):A7PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Schena FP (1998) Role of growth factors in acute renal failure. Kidney Int Suppl 66:S11–S15PubMedPubMedCentralGoogle Scholar
  5. 5.
    Carley WW, Milici AJ, Madri JA (1988) Extracellular matrix specificity for the differentiation of capillary endothelial cells. Exp Cell Res 178(2):426–434PubMedCrossRefGoogle Scholar
  6. 6.
    Harris RC (1997) Growth factors and cytokines in acute renal failure. Adv Ren Replace Ther 4(2 Suppl 1):43–53PubMedGoogle Scholar
  7. 7.
    Bussolati B, Camussi G (2015) Therapeutic use of human renal progenitor cells for kidney regeneration. Nat Rev Nephrol 11:695PubMedCrossRefGoogle Scholar
  8. 8.
    Aggarwal S, Grange C, Iampietro C, Camussi G, Bussolati B (2016) Human CD133(+) renal progenitor cells induce erythropoietin production and limit fibrosis after acute tubular injury. Sci Rep 6:37270PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Qi W, Johnson DW, Vesey DA, Pollock CA, Chen X (2007) Isolation, propagation and characterization of primary tubule cell culture from human kidney. Nephrology (Carlton, Vic). 12(2):155–159CrossRefGoogle Scholar
  10. 10.
    Lazzeri E, Crescioli C, Ronconi E, Mazzinghi B, Sagrinati C, Netti GS et al (2007) Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol 18(12):3128–3138PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kim K, Lee KM, Han DJ, Yu E, Cho YM (2008) Adult stem cell-like tubular cells reside in the corticomedullary junction of the kidney. Int J Clin Exp Pathol 1(3):232–241PubMedPubMedCentralGoogle Scholar
  12. 12.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676CrossRefGoogle Scholar
  13. 13.
    Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C et al (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526(7574):564–568PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78(12):7634–7638PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Roufosse C, Cook HT (2008) Stem cells and renal regeneration. Nephron Exp Nephrol 109(2):e39–e45PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Huls M, Russel FG, Masereeuw R (2008) Insights into the role of bone marrow-derived stem cells in renal repair. Kidney Blood Press Res 31(2):104–110PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115(7):1756–1764PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843PubMedCrossRefGoogle Scholar
  19. 19.
    Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10(2):228–241PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Shukla D, Box GN, Edwards RA, Tyson DR (2008) Bone marrow stem cells for urologic tissue engineering. World J Urol 26(4):341–349PubMedCrossRefGoogle Scholar
  21. 21.
    Humphreys BD, Bonventre JV (2008) Mesenchymal stem cells in acute kidney injury. Annu Rev Med 59(1):311–325PubMedCrossRefGoogle Scholar
  22. 22.
    Park DH, Eve DJ (2009) Regenerative medicine: advances in new methods and technologies. Med Sci Monit 15(11):RA233–RA251PubMedGoogle Scholar
  23. 23.
    Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 63(5):492–496PubMedCrossRefGoogle Scholar
  24. 24.
    Bryksin AV, Brown AC, Baksh MM, Finn MG, Barker TH (2014) Learning from nature—novel synthetic biology approaches for biomaterial design. Acta Biomater 10(4):1761–1769PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dan P, Velot E, Francius G, Menu P, Decot V (2017) Human-derived extracellular matrix from Wharton’s jelly: an untapped substrate to build up a standardized and homogeneous coating for vascular engineering. Acta Biomater 48:227–237PubMedCrossRefGoogle Scholar
  26. 26.
    Borges FT, Schor N (2018) Regenerative medicine in kidney disease: where we stand and where to go. Pediatr Nephrol 33(9):1457–1465PubMedCrossRefGoogle Scholar
  27. 27.
    O’Neill JD, Freytes DO, Anandappa AJ, Oliver JA, Vunjak-Novakovic GV (2013) The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney. Biomaterials 34(38):9830–9841PubMedCrossRefGoogle Scholar
  28. 28.
    Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C et al (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20(11):2338–2347PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ross EA, Abrahamson DR, St John P, Clapp WL, Williams MJ, Terada N et al (2012) Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis 8(2):49–55PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16(7):2207–2216PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19(5):646–651PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Orlando G, Farney AC, Iskandar SS, Mirmalek-Sani SH, Sullivan DC, Moran E et al (2012) Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Ann Surg 256(2):363–370PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Orlando G, Booth C, Wang Z, Totonelli G, Ross CL, Moran E et al (2013) Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials 34(24):5915–5925PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Peloso A, Petrosyan A, Da Sacco S, Booth C, Zambon JP, O’brien T et al (2015) Renal extracellular matrix scaffolds from discarded kidneys maintain glomerular morphometry and vascular resilience and retains critical growth factors. Transplantation 99(9):1807–1816PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Caralt M, Uzarski JS, Iacob S, Obergfell KP, Berg N, Bijonowski BM et al (2015) Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transpl 15(1):64–75CrossRefGoogle Scholar
  36. 36.
    Figliuzzi M, Bonandrini B, Remuzzi A (2017) Decellularized kidney matrix as functional material for whole organ tissue engineering. J Appl Biomater Funct Mater 15(4):e326–e333PubMedPubMedCentralGoogle Scholar
  37. 37.
    Bissell MJ, Aggeler J (1987) Dynamic reciprocity: how do extracellular matrix and hormones direct gene expression? Prog Clin Biol Res 249:251–262PubMedPubMedCentralGoogle Scholar
  38. 38.
    Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F et al (2014) Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng Part A 20(9–10):1486–1498PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Remuzzi A, Figliuzzi M, Bonandrini B, Silvani S, Azzollini N, Nossa R et al (2017) Experimental evaluation of kidney regeneration by organ scaffold recellularization. Sci Rep 7:43502PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Poornejad N, Buckmiller E, Schaumann L, Wang H, Wisco J, Roeder B et al (2017) Re-epithelialization of whole porcine kidneys with renal epithelial cells. J Tissue Eng 8:2041731417718809PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Swaminathan M, Stafford-Smith M, Chertow GM, Warnock DG, Paragamian V, Brenner RM et al (2018) Allogeneic mesenchymal stem cells for treatment of AKI after cardiac surgery. J Am Soc Nephrol 29(1):260–267PubMedCrossRefGoogle Scholar
  42. 42.
    Miller BLK, Garg P, Bronstein B, LaPointe E, Lin H, Charytan DM et al (2018) Extracorporeal stromal cell therapy for subjects with dialysis-dependent acute kidney injury. Kidney Int Rep 3(5):1119–1127PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Miya M, Maeshima A, Mishima K, Sakurai N, Ikeuchi H, Kuroiwa T et al (2011) Enhancement of in vitro human tubulogenesis by endothelial cell-derived factors: implications for in vivo tubular regeneration after injury. Am J Physiol Renal Physiol 301(2):F387–F395PubMedCrossRefGoogle Scholar
  44. 44.
    Chen FM, Zhang M, Wu ZF (2010) Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31(24):6279–6308PubMedCrossRefGoogle Scholar
  45. 45.
    Ko IK, Ju YM, Chen T, Atala A, Yoo JJ, Lee SJ (2012) Combined systemic and local delivery of stem cell inducing/recruiting factors for in situ tissue regeneration. FASEB J 26(1):158–168PubMedCrossRefGoogle Scholar
  46. 46.
    Elia R, Fuegy PW, VanDelden A, Firpo MA, Prestwich GD, Peattie RA (2010) Stimulation of in vivo angiogenesis by in situ crosslinked, dual growth factor-loaded, glycosaminoglycan hydrogels. Biomaterials 31(17):4630–4638PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Reis LA, Borges FT, Simoes MJ, Borges AA, Sinigaglia-Coimbra R, Schor N (2012) Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS One 7(9):e44092PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L et al (2012) Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 7(3):e33115PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wake Forest School of MedicineWake Forest Institute for Regenerative MedicineWinston-SalemUSA
  2. 2.Department of UrologySoonchunhyang University College of MedicineCheonanSouth Korea

Personalised recommendations