Advertisement

Robotic-assisted kidney transplant: a single center experience with median follow-up of 2.8 years

  • Arvind GanpuleEmail author
  • Abhijit Patil
  • Abhishek Singh
  • Mihir Desai
  • Inderbir Gill
  • Ravindra Sabnis
  • Mahesh Desai
Original Article
  • 25 Downloads

Abstract

Purpose

The main aim of the paper is to report a single-centre experience with RAKT, focusing on surgical, perioperative and functional outcomes at a median follow-up of 2.8 years.

Methods

Data of 26 RAKT patients was prospectively collected from December 2014 to February 2019 with follow-up of up to 55 months. All donors were done laparoscopically. We followed Vattikuti–Medanta technique with modification of using pfannenstiel incision instead of Gelpoint and patient positioned in steep Trendelenburg position (30°) with leg split position. Hypothermia was maintained using a “modified graft hypothermia jacket”. The engrafted kidney is oriented with the vessels being tagged with Prolene sutures.

Results

The mean BMI was 26.1 ± 4.7. The mean warm, cold and total ischemia times were 4.8 ± 1.1, 113.8 ± 20.9 and 118.7 ± 21.2 min, respectively. Mean rewarming time was 62.5 ± 10 min. The mean post-operative day (POD) 1, 3, 7, 30, 6 months, 1 year and most recent creatinine was 3.4, 2.4, 1.8, 1.4,1.2, 1.2 and 1.69 mg/dl. There was no case of delayed graft dysfunction (DGF) with graft survival of 1.8-55 months. The mean GFR at POD 1, 1 month and 1 year was 24, 53.16 and 64.6. We had two intraoperative complications—one topsy turvy graft placement with anastomosis of donor ureter to native ureter and other had to be converted to open technique after anastomosis to control graft surface bleeding. Three postoperative complications—one patient has graft pyelonephritis which was managed conservatively with antibiotics. Two patients had lymphocele. One patient was managed with just aspiration while the other required laparoscopic de-roofing of the lymphocele. The mean hospital stay was 13.5 ± 3 days.

Conclusions

RAKT is feasible and safe only if performed by surgeons with appropriate background in robotic surgery and kidney transplantation after proper surgical training at experienced centres in the mid-term follow-up. Further studies need to confirm the long-term safety of RAKT.

Keywords

Kidney transplantation Robot-assisted kidney transplantation RAKT Robotic surgery Vascular anastomosis 

Notes

References

  1. 1.
    Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C et al (2012) United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease and endstage renal disease in the United States. Am J Kidney Dis 59(Suppl 1:A7):e1–e420Google Scholar
  2. 2.
    Murray JE (2001) Surgery of the soul: reflections of a curious career. Science History Publications, CantonGoogle Scholar
  3. 3.
    Rosales A, Salvador JT, Urdaneta G, Patiño D, Montlleó M, Esquena S, Caffaratti J, de Leon JP, Guirado L, Villavicencio H (2010) Laparoscopic kidney transplantation. Eur Urol 57(1):164–167CrossRefGoogle Scholar
  4. 4.
    Modi P, Rizvi J, Pal B, Bharadwaj R, Trivedi P, Trivedi A et al (2011) Laparoscopic kidney transplantation: an initial experience. Am J Transplant 11:1320–1324CrossRefGoogle Scholar
  5. 5.
    Modi P, Thyagaraj K, Rizvi SJ, Vyas J, Padhi S, Shah K et al (2012) Laparoscopic en bloc kidney transplantation. Indian J Urol 28:362–365CrossRefGoogle Scholar
  6. 6.
    Modi P, Pal B, Modi J, Singla S, Patel C, Patel R et al (2013) Retroperitoneoscopic living-donor nephrectomy and laparoscopic kidney transplantation: experience of initial 72 cases. Transplantation 95:100–105CrossRefGoogle Scholar
  7. 7.
    Hoznek A, Zaki SK, Samadi DB et al (2002) Robotic assisted kidney transplantation: an initial experience. J Urol 167:1604–1606CrossRefGoogle Scholar
  8. 8.
    Giulianotti P, Gorodner V, Sbrana F et al (2010) Robotic transabdominal kidney transplantation in a morbidly obese patient. Am J Transplant 10:1478–1482CrossRefGoogle Scholar
  9. 9.
    Boggi U, Vistoli F, Signori S et al (2011) Robotic renal transplantation: first European case. Transpl Int 24:213–218CrossRefGoogle Scholar
  10. 10.
    Yarlagadda SG, Coca SG, Formica RN, Poggio ED, Parikh CR (2009) Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transpl 24(3):1039–1047.  https://doi.org/10.1093/ndt/gfn667 CrossRefGoogle Scholar
  11. 11.
    Menon M, Sood A, Bhandari M et al (2014) Robotic kidney transplantation with regional hypothermia: a step-by-step description of the Vattikuti Urology Institute—Medanta technique (IDEAL phase 2a). Eur Urol 65:991–1000CrossRefGoogle Scholar
  12. 12.
    Sood A, Ghosh P, Jeong W et al (2015) Minimally invasive kidney transplantation: perioperative considerations and key 6-month outcomes. Transplantation 99:316–323CrossRefGoogle Scholar
  13. 13.
    Breda A, Territo A, Gausa L et al (2017) Robotic kidney transplantation: one year after the beginning. World J Urol 35:1507–1515CrossRefGoogle Scholar
  14. 14.
    Breda A, Territo A, Gausa L et al (2017) Robot-assisted kidney transplantation: the European experience. Eur Urol.  https://doi.org/10.1016/j.eururo.2017.08.028 Google Scholar
  15. 15.
    Tsai MK, Lee CY, Yang CY et al (2014) Robot-assisted renal transplantation in the retroperitoneum. Transpl Int 27:452–457CrossRefGoogle Scholar
  16. 16.
    Tzvetanov I, Giulianotti PC, Bejarano-Pineda L et al (2013) Robotic-assisted kidney transplantation. Surg Clin North Am 93:1309–1323CrossRefGoogle Scholar
  17. 17.
    Tuğcu V, Sener NC, Sahin S, Yavuzsan AH, Akbay FG, Apaydin S (2016) Robotic kidney transplantation: the Bakirkoy experience. Turk J Urol 42:295–298CrossRefGoogle Scholar
  18. 18.
    Oberholzer J, Giulianotti P, Danielson KK et al (2013) Minimally invasive robotic kidney transplantation for obese patients previously denied access to transplantation. Am J Transplant 13:721–728CrossRefGoogle Scholar
  19. 19.
    Wagenaar S, Nederhoed JH, Hoksbergen AWJ, Bonjer HJ, Wisselink W, van Ramshorst GH (2017) Minimally invasive, laparoscopic, and robot- ic-assisted techniques versus open techniques for kidney transplant recipients: a systematic review. Eur Urol 72:205–217CrossRefGoogle Scholar
  20. 20.
    Vignolini G, Campi R, Sessa F, Greco I, Larti A, Giancane S, Sebastianelli A, Gacci M, Peris A, Li Marzi V, Breda A, Siena G, Serni S (2019) Development of a robot-assisted kidney transplantation programme from deceased donors in a referral academic centre: technical nuances and preliminary results. BJU Int 123:474–484.  https://doi.org/10.1111/bju.14588 CrossRefGoogle Scholar
  21. 21.
    Vignolini G, Sessa F, Greco I, Pili A, Giancane S, Sebastianelli A, Siena G, Gacci M, Li Marzi V, Campi R, Serni S (2018) Robotic kidney transplantation from a brain-dead deceased donor in a patient with autosomal dominant polycystic kidney disease: first case report. J Endourol Case Rep 4.1:124–128CrossRefGoogle Scholar
  22. 22.
    Siena G, Campi R, Decaestecker K, Tuğcu V, Sahin S, Alcaraz A, Musquera M, Territo A, Gausa L, Randon C, Stockle M, Janssen M, Fornara P, Mohammed N, Guirado L, Facundo C, Doumerc N, Vignolini G, Breda A, Serni S (2018) Robot-assisted kidney transplantation with regional hypothermia using grafts with multiple vessels after extracorporeal vascular reconstruction: results from the European Association of Urology Robotic Urology Section Working Group. Eur Urol Focus 4(2):175–184CrossRefGoogle Scholar
  23. 23.
    Territo A, Gausa L, Alcaraz A, Musquera M, Doumerc N, Decaestecker K, Desender L, Stockle M, Janssen M, Fornara P, Mohammed N, Siena G, Serni S, Sahin S, Tuǧcu V, Basile G, Breda A (2018) European experience of robot-assisted kidney transplantation: minimum of 1-year follow-up. BJU Int 122:255–262.  https://doi.org/10.1111/bju.14247 CrossRefGoogle Scholar
  24. 24.
    Vignolini G, Sessa F, Greco I, Cito G, Vanacore D, Cocci A et al (2019) Intraoperative assessment of ureteral and graft reperfusion during robotic kidney transplantation with indocyanine green fluorescence videography. Minerva Urol Nefrol 71:79–84.  https://doi.org/10.23736/S0393-2249.18.03278-2 CrossRefGoogle Scholar
  25. 25.
    Adiyat KT, Vinod KK, Vishnu R, Ramaprasad MK, Unni VN, John RP (2018) Robotic-assisted renal transplantation with total extraperitonealization of the graft: experience of 34 cases. J Robot Surg 12(3):535–540CrossRefGoogle Scholar
  26. 26.
    Bruyère F, Pradère B, d’Arcier BF, Boutin JM, Buchler M, Brichart N (2018) Robot-assisted renal transplantation using the retroperitoneal approach (RART) with more than one year follow up: description of the technique and results. Progrès en Urol 28(1):48–54CrossRefGoogle Scholar
  27. 27.
    Tuğcu VŞNŞhS (2018) Robo -assisted kidney transplantation: comparison of the first 40 cases of open vs robot-assisted transplantations by a single surgeon. BJU Int 121(2):275–280.  https://doi.org/10.1111/bju.14014 CrossRefGoogle Scholar
  28. 28.
    Ahlawat RK, Tugcu V, Arora S et al (2018) Learning curves and timing of surgical trials: robotic kidney transplantation with regional hypothermia. J Endourol.  https://doi.org/10.1089/end.2017.0697 Google Scholar
  29. 29.
    Sood A, Ghani KR, Ahlawat R et al (2014) Application of the statistical process control method for prospective patient safety monitoring during the learning phase: robotic kidney transplantation with regional hypothermia (IDEAL phase 2a-b). Eur Urol 66(2):371–378.  https://doi.org/10.1016/j.eururo.2014.02.055 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Arvind Ganpule
    • 1
    Email author
  • Abhijit Patil
    • 1
  • Abhishek Singh
    • 1
  • Mihir Desai
    • 2
  • Inderbir Gill
    • 2
  • Ravindra Sabnis
    • 1
  • Mahesh Desai
    • 1
  1. 1.Department of UrologyMuljibhai Patel Urological HospitalNadiadIndia
  2. 2.Department of UrologyKeck Hospital of USCLos AngelesUSA

Personalised recommendations