Advertisement

Emerging drugs to target lower urinary tract symptomatology (LUTS)/benign prostatic hyperplasia (BPH): focus on the prostate

  • Stefan ÜckertEmail author
  • George T. Kedia
  • Dimitrios Tsikas
  • Annika Simon
  • Andreas Bannowsky
  • Markus A. Kuczyk
Original Article
  • 25 Downloads

Abstract

Objectives

The benign prostatic syndrome, comprising lower urinary tract symptomatology secondary to benign prostatic hyperplasia/enlargement, represents a major health care issue in westernized countries. The pharmacological management involves alpha-adrenoceptor antagonists, intervention into the hormonal control of prostate growth using inhibitors of the enzyme 5-alpha-reductase, and stimulation of the nitric oxide/cyclic GMP pathway by tadalafil, an inhibitor of the phosphodiesterase type 5.

Methods

This review summarizes the achievements which have been made in the development of drug candidates assumed to offer opportunities as beneficial treatment options in the management of the benign prostatic syndrome.

Results

A review of the literature has revealed that the line of development is focusing on drugs interfering with peripheral neuromuscular/neuronal mechanisms (nitric oxide donor drugs, agonists/antagonists of endogenous peptides, botulinum toxin, NX-1207), the steroidal axis (cetrorelix) or the metabolic turn-over (lonidamine), as well as the combination of drugs already established in the treatment of lower urinary tract symptomatology/benign prostatic hyperplasia (phosphodiesterase 5 inhibitor plus alpha-adrenoceptor antagonist).

Conclusion

Many research efforts have provided the basis for the development of new therapeutic modalities for the management of lower urinary tract dysfunctions, some of which might be offered to the patients in the near future.

Keywords

Lower urinary tract symptoms (LUTS) Benign prostatic hyperplasia (BPH) Pharmacotherapy 

Notes

Author contributions

SÜ: data collection, manuscript writing. GTK: data collection, manuscript writing. DT: data collection/analysis, manuscript editing. AS: data collection, manuscript writing. AB: data collection/analysis. MAK: manuscript editing.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest and have received no payment for the preparation of the manuscript.

References

  1. 1.
    Guess HA (1995) Epidemiology and natural history of benign prostatic hyperplasia. Urol Clin North Am 22:247–261Google Scholar
  2. 2.
    Paolone DR (2010) Benign prostatic hyperplasia. Clin Geriatr Med 26:223–239CrossRefGoogle Scholar
  3. 3.
    Chughtai B, Forde JC, Thomas DD, Laor L, Hossack T, Woo HH, Te AE, Kaplan SA (2016) Benign prostatic hyperplasia. Nat Rev Dis Primers 2:16031CrossRefGoogle Scholar
  4. 4.
    Andersson KE (2002) Alpha-adrenoceptors and benign prostatic hyperplasia: basic principles for treatment with alpha-adrenoceptor antagonists. World J Urol 19:390–396CrossRefGoogle Scholar
  5. 5.
    Djavan B, Chapple C, Milani S, Marberger M (2004) State of the art on the efficacy and tolerability of alpha1-adrenoceptor antagonists in patients with lower urinary tract symptoms suggestive of benign prostatic hyperplasia. Urology 64:1081–1088CrossRefGoogle Scholar
  6. 6.
    Lepor H (2016) Alpha-blockers for the treatment of benign prostatic hyperplasia. Urol Clin North Am 43:311–323CrossRefGoogle Scholar
  7. 7.
    Roehrborn CG, Schwinn DA (2004) Alpha1-adrenergic receptor and their inhibitors in lower urinary tract symptoms an benign prostatic hyperplasia. J Urol 171:1029–1035CrossRefGoogle Scholar
  8. 8.
    van Kerrebroeck P, Chapple C, Drogendijk T, Klaver M, Sokol R, Speakman M, Traudtner K, Drake MJ (for the NEPTUNE Study Group) (2013) Combination therapy with solifenacin and tamsulosin oral controlled absorption system in a single tablet for lower urinary tract symptoms in men: efficacy and safety results from the randomised controlled NEPTUNE trial. Eur Urol 64:1003–1012CrossRefGoogle Scholar
  9. 9.
    Drake MJ, Oelke M, Snijder R, Klaver M, Traudtner K, van Charldorp K, Bongaerts D, van Kerrebroeck P (2017) Incidence of urinary retention during treatment with singe tablet combinations of solifenacin + tamsulosin OCAS™ for up to 1 year in adult men with both storage and voiding LUTS: a subanalysis of the NEPTUNE/NEPTUNE II randomized controlled studies. PLoS One 12:e0170726CrossRefGoogle Scholar
  10. 10.
    Naslund MJ, Miner M (2007) A review of the clinical efficacy and safety of 5-alpha-reductase inhibitors for the enlarged prostate. Clin Ther 29:17–25CrossRefGoogle Scholar
  11. 11.
    Nickel JC, Gilling P, Tammela TL, Morrill B, Wilson TH, Rittmaster RS (2011) Comparison of dutasteride and finasteride for treating benign prostatic hyperplasia: the Enlarged Prostate International Comparator Study (EPICS). BJU Int 108:388–394CrossRefGoogle Scholar
  12. 12.
    Roehrborn CG, Oyarzabal Perez I, Roos EP, Calomfirescu N, Brotherton B, Wang F, Palacios JM, Vasylyev A, Manyak MJ (2015) Efficacy and safety of a fixed-dose combination of dutasteride and tamsulosin treatment (DUODART) compared with watchful waiting with initiation of tamsulosin therapy if symptoms do not improve, both provided with lifestyle advice, in the management of treatment-naïve men with moderately symptomatic benign prostatic hyperplasia: 2-year CONDUCT study results. BJU Int 16:450–459CrossRefGoogle Scholar
  13. 13.
    de Nunzio C, Presicce F, Tubaro A (2016) Combination therapies for improved management of lower urinary tract symptoms/benign prostatic hyperplasia. Drugs Today (Barcelona) 52:501–517CrossRefGoogle Scholar
  14. 14.
    Ozdemir I, Bozkurt O, Demir O, Aslan G, Esen AA (2009) Combination therapy with doxazosin and tenoxicam for the management of lower urinary tract symptoms. Urology 74:431–435CrossRefGoogle Scholar
  15. 15.
    Porst H, Kim ED, CasabE AR et al (2011) Efficacy and safety of tadalafil once daily in the treatment of men with lower urinary tract symptoms suggestive of benign prostatic hyperplasia: results of an international randomized, double-blind, placebo-controlled trial. Eur Urol 60:1105–1113CrossRefGoogle Scholar
  16. 16.
    Porst H, Oelke M, Goldfischer ER, Cox D, Watts S, Dey D, Viktrup L (2013) Efficacy and safety of tadalafil 5 mg once daily for lower urinary tract symptoms suggestive of benign prostatic hyperplasia: subgroup analyses of pooled data from 4 multi-national, randomized, placebo-controlled clinical studies. Urology 82:667–673CrossRefGoogle Scholar
  17. 17.
    Dmochowski R, Roehrborn C, Klise S, Xu L, Kaminetsky J, Kraus S (2013) Urodynamic effects of once daily tadalafil in men with lower urinary tract symptoms secondary to clinical benign prostatic hyperplasia: a randomized, placebo controlled 12-week clinical trial. J Urol 189(Suppl 1):S135–S140Google Scholar
  18. 18.
    Dedhia RC, McVary KT (2008) Phytotherapy for lower urinary tract symptoms secondary to benign prostatic hyperplasia. J Urol 179:2119–2125CrossRefGoogle Scholar
  19. 19.
    Sharma M, Chadha R, Dhingra N (2017) Phytotherapeutic agents for benign prostatic hyperplasia: an overview. Mini Rev Med Chem 17:1346–1363Google Scholar
  20. 20.
    de Mey C (1998) Cardiovascular effects of alpha-blockers used for the treatment of symptomatic BPH: impact on safety and well-being. Eur Urol 34(Suppl 2):18–28 (Erratum in: Eur Urol (1998) 34:527) CrossRefGoogle Scholar
  21. 21.
    Castiglione F, Benigni F, Briganti A, Salonia A, Villa L, Nini A, Di Trapani E, Capitanio U, Hedlund P, Montorsi F (2014) Naftopidil for the treatment of benign prostate hyperplasia: a systematic review. Curr Med Res Opin 30:719–732CrossRefGoogle Scholar
  22. 22.
    Perumal C, Chowdhury PS, Ananthakrishnan N, Nayak P, Gurumurthy S (2015) A comparison of the efficacy of naftopidil and tamsulosin hydrochloride in medical treatment of benign prostatic enlargement. Urol Ann 7:74–78CrossRefGoogle Scholar
  23. 23.
    Tsuritani S, Nozaki T, Okumura A, Kimura H, Kazama T (2010) A prospective, randomized, controlled, multicenter study of naftopidil for treatment of male lower urinary tract symptoms associated with benign prostatic hyperplasia: 75 mg once daily in the evening compared to 25 mg thrice daily. Urol Int 85:80–87CrossRefGoogle Scholar
  24. 24.
    Yokoyama T, Kumon H, Nasu Y, Takamoto H, Watanabe T (2006) Comparison of 25 and 75 mg/day naftopidil for lower urinary tract symptoms associated with benign prostatic hyperplasia: a prospective, randomized controlled study. Int J Urol 13:932–938CrossRefGoogle Scholar
  25. 25.
    Yasuda K, Yamanishi T, Tojo M, Nagashima K, Akimoto S, Shimazaki J (1994) Effect of naftopidil on urethral obstruction in benign prostatic hyperplasia: assessment by urodynamic studies. Prostate 25:46–52CrossRefGoogle Scholar
  26. 26.
    Tanaka T, Kuratsukuri K, Yoshimura R, Adachi T, Yamaguchi T, Ohmachi T, Yamamoto S, Nakamura T, Tamada S, Nakatani T (2015) Efficacy of naftopidil for nocturia in male patients with lower urinary tract symptoms: comparison of morning and evening dosing. Int J Urol 22:317–321CrossRefGoogle Scholar
  27. 27.
    Chang RS, Chen TB, O’Malley SS, Pettibone DJ, DiSalvo J, Francis B, Bock MG, Freidinger R, Nagarathnam D, Miao SW, Shen Q, Lagu B, Murali Dhar TG, Tyagarajan S, Marzabadi MR, Wong WC, Gluchowski C, Forray C (2000) In vitro studies on L-771.688 (SNAP 6383), a new potent and selective alpha1A-adrenoceptor antagonist. Eur J Pharmacol 409:301–312CrossRefGoogle Scholar
  28. 28.
    Ford AP, Arredondo NF, Blue DR Jr, Bonhaus DW, Jasper J, Kava MS, Lesnick J, Pfister JR, Shieh IA, Vimont RL, Williams TJ, McNeal JE, Stamey TA, Clarke DE (1996) RS-17053 (N-[2-(2-cyclopropyl-methoxyphenoxy)ethyl]-5-chloro-alpha, alpha-dimethyl-1H-indole-3-ethanamine hydrochloride), a selective alpha1A-adrenoceptor antagonist, displays low affinity for functional alpha1-adrenoceptors in human prostate: implications for adrenoceptor classification. Mol Pharmacol 49:209–215Google Scholar
  29. 29.
    Marshall I, Burt RP, Green GM, Hussain MB, Chapple CR (1996) Different subtypes of alpha1A-adrenoceptor mediating contraction of rat epididymal vas deferens, rat hepatic portal vein and human prostate distinguished by the antagonist RS-17053. Br J Pharmacol 119:407–415CrossRefGoogle Scholar
  30. 30.
    Hedlund P, Ekstrom P, Larsson B, Alm P, Andersson KE (1997) Heme oxygenase and NO-synthase in the human prostate—relation to adrenergic, cholinergic and peptide-containing nerves. J Auton Nerv Syst 63:115–126CrossRefGoogle Scholar
  31. 31.
    Hedlund P, Larsson B, Alm P, Andersson KE (1996) Nitric oxide synthase-containing nerves and ganglia in the dog prostate: a comparison with other transmitters. Histochem J 28:635–642CrossRefGoogle Scholar
  32. 32.
    Takeda M, Tang R, Shapiro E, Burnett AL, Lepor H (1995) Effects of nitric oxide on human and canine prostates. Urology 45:440–446CrossRefGoogle Scholar
  33. 33.
    Naibar-Kaszkiel AT, Di Iulio JL, Li CG, Rand MJ (1997) Characterisation of excitatory and inhibitory transmitter systems in prostate glands of rats, guinea pigs, rabbits and pigs. Eur J Pharmacol 337:251–258CrossRefGoogle Scholar
  34. 34.
    Hennenberg M, Schott M, Kan A, Keller P, Tamalunas A, Ciotkowska A, Rutz B, Wang Y, Strittmatter F, Herlemann A, Yu Q, Stief CG, Gratzke C (2016) Inhibition of adrenergic and non-adrenergic smooth muscle contraction in the human prostate by the phosphodiesterase 10-selective inhibitor TC-E 5005. Prostate 76:1364–1374CrossRefGoogle Scholar
  35. 35.
    Bechara A, Romano S, Casabé A, Haime S, Dedola P, Hernández C, Rey H (2008) Comparative efficacy assessment of tamsulosin vs. tamsulosin plus tadalafil in the treatment of LUTS/BPH. Pilot study. J Sex Med 5:2170–2178CrossRefGoogle Scholar
  36. 36.
    Kim SW, Park NC, Lee SW, Yang DY, Park JK, Moon DG, Yang SK, Lee SW, Moon KH, Ahn TY, Kim SW, Park K, Min KS, Ryu JK, Son H, Jung J, Hyun JS (2017) Efficacy and safety of a fixed-dose combination therapy of tamsulosin and tadalafil for patients with lower urinary tract symptoms and erectile dysfunction: results of a randomized, double-blinded, active-controlled trial. J Sex Med 14:1018–1027CrossRefGoogle Scholar
  37. 37.
    Kaplan SA, Gonzalez RR, Te AE (2007) Combination of alfuzosin and sildenafil is superior to monotherapy in treating lower urinary tract symptoms and erectile dysfunction. Eur Urol 51:1717–1723CrossRefGoogle Scholar
  38. 38.
    Fawzi A, Kamel M, Salem E, Desoky E, Omran M, Elgalaly H, Sakr A, Maarouf A, Khalil S (2016) Sildenafil citrate in combination with tamsulosin versus tamsulosin monotherapy for management of male lower urinary tract symptoms due to benign prostatic hyperplasia: a randomised, double-blind, placebo-controlled trial. Arab J Urol 15:53–59CrossRefGoogle Scholar
  39. 39.
    Gacci M, Vittori G, Tosi N, Siena G, Rossetti MA, Lapini A, Vignozzi L, Serni S, Maggi M, Carini M (2012) A randomized, placebo-controlled study to assess safety and efficacy of vardenafil 10 mg and tamsulosin 0.4 mg vs. tamsulosin 0.4 mg alone in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. J Sex Med 9:1624–1633CrossRefGoogle Scholar
  40. 40.
    Mason RP, Cockcroft JR (2006) Targeting nitric oxide with drug therapy. J Clin Hypertens (Greenwich) 8(Suppl 4):40–52CrossRefGoogle Scholar
  41. 41.
    Scatena R, Bottoni P, Martorana GE, Giardina B (2005) Nitric oxide donor drugs: an update on pathophysiology and therapeutic potential. Expert Opin Investig Drugs 14:835–846CrossRefGoogle Scholar
  42. 42.
    Oliveira-Paula GH, Tanus-Santos JE (2019) Nitrite-stimulated gastric formation of S-nitrosothiols as an antihypertensive therapeutic strategy. Curr Drug Targets 20:431–443CrossRefGoogle Scholar
  43. 43.
    Kedia GT, Ückert S, Kedia M, Truss MC, Chigogidze T, Jonas U, Managadze LG (2006) In vitro effects of cyclic AMP- and cyclic GMP-stimulating drugs on the relaxation of the prostate smooth muscle tissue contraction induced by endothelin-1. Georgian Med News 131:7–13Google Scholar
  44. 44.
    Kedia GT, Ückert S, Scheller F, Chigogidze T, Managadze L, Jonas U, Truss MC (2006) In vitro functional responses of isolated normal human prostatic tissue to compounds interacting with the cyclic guanosine monophosphate pathway. Urology 67:1292–1297CrossRefGoogle Scholar
  45. 45.
    Heuer O, Ückert S, Dobler G, Klocker H, Stief CG, Truss MC, Bartsch G, Jonas U (2004) Effects of phosphodiesterase inhibitors and nitric oxide donors on cultured human prostatic smooth muscle cells. Eur Urol 3(Suppl 2):19 (Abstract, presented at the 19th Congress of the European Association of Urology (EAU), Vienna, Austria, 24-March to 27-March 2004) CrossRefGoogle Scholar
  46. 46.
    Berger AP, Deibl M, Leonhartsberger N, Bektic J, Horninger W, Fritsche G, Steiner H, Pelzer AE, Bartsch G, Frauscher F (2005) Vascular damage as a risk factor for benign prostatic hyperplasia and erectile dysfunction. BJU Int 96:1073–1078CrossRefGoogle Scholar
  47. 47.
    Saito M, Tsounapi P, Oikawa R, Shimizu S, Honda M, Sejima T, Kinoshita Y, Tomita S (2014) Prostatic ischemia induces ventral prostatic hyperplasia in the SHR: possible mechanism of development of BPH. Sci Rep 4:3822CrossRefGoogle Scholar
  48. 48.
    Fernandes VS, Martínez-Sáenz A, Recio P, Ribeiro AS, Sánchez A, Martínez MP, Martínez AC, García-Sacristán A, Orensanz LM, Prieto D, Hernández M (2011) Mechanisms involved in nitric oxide-induced vasorelaxation in porcine prostatic arteries. Naunyn Schmiedebergs Arch Pharmacol 384:245–253CrossRefGoogle Scholar
  49. 49.
    Roshani A, Khosropanah I, Salehi M, Kamran AN (2010) Effects of isosorbide dinitrate on the urinary flow rate in patients with benign prostatic hyperplasia. Urol J 7:183–187Google Scholar
  50. 50.
    Tadayyon F, Izadpanahi M, Aali S, Mazdak H, Khorrami MH (2012) The effect of sublingual isosorbide dinitrate on acute urinary retention due to benign prostatic hyperplasia. Saudi J Kidney Dis Transpl 23:782–785CrossRefGoogle Scholar
  51. 51.
    Klotz T, Mathers MJ, Bloch W, Nayal W, Engelmann U (1999) Nitric oxide based influence of nitrates on micturition in patients with benign prostatic hyperplasia. Int Urol Nephrol 31:335–341CrossRefGoogle Scholar
  52. 52.
    Hedlund P (2005) Nitric oxide/cGMP-mediated effects in the outflow region of the lower urinary tract—is there a basis for pharmacological targeting of cGMP? World J Urol 23:362–367CrossRefGoogle Scholar
  53. 53.
    Kedia GT, Ückert S, Jonas U, Kuczyk MA, Burchardt M (2008) The nitric oxide pathway in the human prostate: clinical implications in men with lower urinary tract symptoms. World J Urol 26:603–609CrossRefGoogle Scholar
  54. 54.
    Siejka A, Schally AV, Block NL, Barabutis N (2010) Mechanisms of inhibition of human benign prostatic hyperplasia in vitro by the luteinizing hormone-releasing hormone antagonist cetrorelix. BJU Int 106:1382–1388CrossRefGoogle Scholar
  55. 55.
    Rozsa B, Nadji M, Schally AV, Dezso B, Flasko T, Toth G, Mile M, Block NL, Halmos G (2011) Receptors for luteinizing hormone-releasing hormone (LHRH) in benign prostatic hyperplasia (BPH) as potential molecular targets for therapy with LHRH antagonist cetrorelix. Prostate 71:445–452CrossRefGoogle Scholar
  56. 56.
    Rick FG, Schally AV, Block NL, Halmos G, Perez R, Fernandez JB, Vidaurre I, Szalontay L (2001) LHRH antagonist Cetrorelix reduces prostate size and gene expression of proinflammatory cytokines and growth factors in a rat model of benign prostatic hyperplasia. Prostate 71:736–747CrossRefGoogle Scholar
  57. 57.
    Debruyne F, Tzvetkov M, Altarac S, Geavlete PA (2010) Dose-ranging study of the luteinizing hormone-releasing hormone receptor antagonist cetrorelixpamoate in the treatment of patients with symptomatic benign prostatic hyperplasia. Urology 76:927–933CrossRefGoogle Scholar
  58. 58.
    Swaminathan S (2011) Molecular structures and functional relationships in clostridial neurotoxins. FEBS J 278:4467–4485CrossRefGoogle Scholar
  59. 59.
    Lam KH, Yao G, Jin R (2015) Diverse binding modes, same goal: the receptor recognition mechanism of botulinum neurotoxin. Prog Biophys Mol Biol 117:225–231CrossRefGoogle Scholar
  60. 60.
    Chartier-Kastler E, Mehnert U, Denys P, Giuliano F (2009) Perspective of Botox for treatment of male lower urinary tract symptoms. Curr Opin Urol 19:20–25CrossRefGoogle Scholar
  61. 61.
    Brisinda G, Cadeddu F, Vanella S, Mazzeo P, Marniga G, Maria G (2009) Relief by botulinum toxin of lower urinary tract symptoms owing to benign prostatic hyperplasia: early and long-term results. Urology 73:90–94CrossRefGoogle Scholar
  62. 62.
    Chuang YC, Chiang PH, Yoshimura N, De Miguel F, Chancellor MB (2006) Sustained beneficial effects of intraprostatic botulinum toxin type A on lower urinary tract symptoms and quality of life in men with benign prostatic hyperplasia. BJU Int 98:1033–1037CrossRefGoogle Scholar
  63. 63.
    Sacco E, Bientinesi R, Marangi F, Totaro A, D’Addessi A, Racioppi M, Pinto F, Vittori M, Bassi P (2012) Patient-reported outcomes in men with lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH) treated with intraprostatic onabotulinumtoxin A: 3 month results of a prospective single-armed cohort study. BJU Int 110(11):E837–E844CrossRefGoogle Scholar
  64. 64.
    Marberger M, Chartier-Kastler E, Egerdie B, Lee KS, Grosse J, Bugarin D, Zhou J, Patel A, Haag-Molkenteller C (2013) A randomized double-blind, placebo-controlled phase 2 dose-ranging study of onabotulinumtoxin A in men with benign prostatic hyperplasia. Eur Urol 63:496–503CrossRefGoogle Scholar
  65. 65.
    Shim SR, Cho YJ, Shin IS, Kim JH (2016) Efficacy and safety of botulinum toxin injection for benign prostatic hyperplasia: a systematic review and meta-analysis. Int Urol Nephrol 48:19–30CrossRefGoogle Scholar
  66. 66.
    Comeglio P, Chavalmane AK, Fibbi B, Filippi S, Marchetta M, Marini M, Morelli A, Penna G, Vignozzi L, Vannelli GB, Adorini L, Maggi M (2010) Human prostatic urethra expresses vitamin D receptor and responds to vitamin D receptor ligation. J Endocrinol Invest 33:730–738CrossRefGoogle Scholar
  67. 67.
    Morelli A, Vignozzi L, Filippi S, Vannelli GB, Ambrosini S, Mancina R, Crescioli C, Donati S, Fibbi B, Colli E, Adorini L, Maggi M (2007) BXL-628, a vitamin D receptor agonist effective in benign prostatic hyperplasia treatment, prevents RhoA activation and inhibits RhoA/Rho kinase signaling in rat and human bladder. Prostate 67:234–247CrossRefGoogle Scholar
  68. 68.
    Penna G, Fibbi B, Amuchastegui S, Corsiero E, Laverny G, Silvestrini E, Chavalmane A, Morelli A, Sarchielli E, Vannelli GB, Gacci M, Colli E, Maggi M, Adorini L (2009) The vitamin D receptor agonist elocalcitol inhibits IL-8-dependent benign prostatic hyperplasia stromal cell proliferation and inflammatory response by targeting the RhoA/Rho kinase and NF-kappa B pathways. Prostate 69:480–493CrossRefGoogle Scholar
  69. 69.
    Adorini L, Penna G, Amuchastegui S, Cossetti C, Aquilano F, Mariani R, Fibbi B, Morelli A, Uskokovic M, Colli E, Maggi M (2007) Inhibition of prostate growth and inflammation by the vitamin D receptor agonist BXL-628 (elocalcitol). J Steroid Biochem Mol Biol 103:689–693CrossRefGoogle Scholar
  70. 70.
    Colli E, Rigatti P, Montorsi F, Artibani W, Petta S, Mondaini N, Scarpa R, Usai P, Olivieri L, Maggi M (for the BPH Italian Study Group) (2006) BXL-628, a novel vitamin D3 analog arrests prostate growth in patients with benign prostatic hyperplasia: a randomized clinical trial. Eur Urol 49:82–86CrossRefGoogle Scholar
  71. 71.
    Hanley MR, Benton HP, Lightman SL, Todd K, Bone EA, Fretten P, Palmer S, Kirk CJ, Michell RH (1984) A vasopressin-like peptide in the mammalian sympathetic nervous system. Nature (London) 309:258–261CrossRefGoogle Scholar
  72. 72.
    van Kerrebroeck P (2011) Nocturia: current status and future perspectives. Curr Opin Obstet Gynecol 23:376–385Google Scholar
  73. 73.
    Oelke M, Adler E, Marschall-Kehrel D, Herrmann TR, Berges R (2014) Nocturia: state of the art and critical analysis of current assessment and treatment strategies. World J Urol 32:1109–1117CrossRefGoogle Scholar
  74. 74.
    Ali F, Guglin M, Vaitkevicius P, Ghali JK (2007) Therapeutic potential of vasopressin receptor antagonists. Drugs 67:847–858CrossRefGoogle Scholar
  75. 75.
    Lemmens-Gruber R, Kamyar M (2008) Pharmacology and clinical relevance of vasopressin antagonists. Der Internist (Berlin) 49:628–634CrossRefGoogle Scholar
  76. 76.
    Yoshimura N, Kaiho Y, Miyazato M, Yunoki T, Tai C, Chancellor MB, Tyagi P (2008) Therapeutic receptor targets for lower urinary tract dysfunction. Naunyn Schmiedeberg’s Arch Pharmacol 377(4–6):437–448CrossRefGoogle Scholar
  77. 77.
    Bodanszky M, Sharaf H, Roy JB, Said SI (1992) Contractile activity of vasotocin, oxytocin, and vasopressin on mammalian prostate. Eur J Pharmacol 216:311–313CrossRefGoogle Scholar
  78. 78.
    Crankshaw D (1989) [Arg8]vasopressin-induced contractions of rabbit urinary bladder smooth muscle. Eur J Pharmacol 173(2–3):183–188CrossRefGoogle Scholar
  79. 79.
    Gupta J, Russell R, Wayman C, Hurley D, Jackson V (2008) Oxytocin-induced contractions within rat and rabbit ejaculatory tissues are mediated by vasopressin V1A receptors and not oxytocin receptors. Br J Pharmacol 155:118–126CrossRefGoogle Scholar
  80. 80.
    Palea S, Corsi M, Artibani W, Ostardo E, Pietra C (1996) Pharmacological characterization of tachykinin NK2 receptors on isolated human urinary bladder, prostatic urethra and prostate. J Pharmacol Exp Ther 277:700–705Google Scholar
  81. 81.
    Malherbe P, Ballard TM, Ratni H (2011) Tachykinin neurokinin 3 receptor antagonists: a patent review (2005–2010). Expert Opin Ther Pat 21:637–655CrossRefGoogle Scholar
  82. 82.
    Bakali E, Elliott RA, Taylor AH, Willets J, Konje JC, Tincello DG (2013) Distribution and function of the endocannabinoid system in the rat and human bladder. Int Urogynecol J 24:855–863CrossRefGoogle Scholar
  83. 83.
    Hedlund P (2014) Cannabinoids and the endocannabinoid system in lower urinary tract function and dysfunction. Neurourol Urodyn 33:46–53CrossRefGoogle Scholar
  84. 84.
    Hedlund P, Gratzke C (2016) The endocannabinoid system—a target for the treatment of LUTS? Nat Rev Urol 13:463–470CrossRefGoogle Scholar
  85. 85.
    Gratzke C, Weinhold P, Reich O, Seitz M, Schlenker B, Stief CG, Andersson KE, Hedlund P (2010) Transient receptor potential A1 and cannabinoid receptor activity in human normal and hyperplastic prostate: relation to nerves and interstitial cells. Eur Urol 57:902–910CrossRefGoogle Scholar
  86. 86.
    Shore N (2010) NX-1207: a novel investigational drug for the treatment of benign prostatic hyperplasia. Expert Opin Investig Drugs 19:305–310CrossRefGoogle Scholar
  87. 87.
    Shore N, Cowan B (2011) The potential for NX-1207 in benign prostatic hyperplasia: an update for clinicians. Ther Adv Chronic Dis 2:283–377CrossRefGoogle Scholar
  88. 88.
    Kunit T, Lusuardi L (2014) An evidence-based review of NX1207 and its potential in the treatment of benign prostatic hyperplasia. Res Rep Urol 6:67–70Google Scholar
  89. 89.
    Shore N, Tutrone R, Efros M, Bidair M, Wachs B, Kalota S, Freedman S, Bailen J, Levin R, Richardson S, Kaminetsky J, Snyder J, Shepard B, Goldberg K, Hay A, Gange S, Grunberger I (2018) Fexapotide triflutate: results of long-term safety and efficacy trials of a novel injectable therapy for symptomatic prostate enlargement. World J Urol 36:801–809CrossRefGoogle Scholar
  90. 90.
    Brawer MK (2005) Lonidamine: basic science and rationale for treatment of prostatic proliferative disorders. Rev Urol 7(Suppl 7):S21–S526Google Scholar
  91. 91.
    Nath K, Guo L, Nancolas B, Nelson DS, Shestov AA, Lee SC, Roman J, Zhou R, Leeper DB, Halestrap AP, Blair IA, Glickson JD (2016) Mechanism of anti-neoplastic activity of lonidamine. Biochim Biophys Acta 1866:151–162Google Scholar
  92. 92.
    Roehrborn CG (2005) The development of lonidamine for benign prostatic hyperplasia and other indications. Rev Urol 7(Suppl 7):S12–S620Google Scholar
  93. 93.
    Ditonno P, Battaglia M, Selvaggio O, Garofalo L, Lorusso V, Selvaggi FP (2005) Clinical evidence supporting the role of lonidamine for the treatment of BPH. Rev Urol 7(Suppl 7):S27–S533Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Surgery, Department of Urology and Urological OncologyHannover Medical SchoolHannoverGermany
  2. 2.Core Unit Proteomics, Center of Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
  3. 3.Department of Internal MedicineHannover Medical SchoolHannoverGermany
  4. 4.Department of UrologyImland Klinik GmbHRendsburgGermany

Personalised recommendations