Advertisement

A critical appraisal of biomarkers in prostate cancer

  • Vikram M. NarayanEmail author
Topic Paper

Abstract

Purpose

A number of urine and blood-based biomarker tests have been described for prostate cancer, although to date there has only been a limited exploration of the methodology behind the validation studies that underpin these tests.

Methods

In this review, a selection of commercially available urine and blood-based biomarker tests for prostate cancer are described, and the underlying key validation studies for each test are critically appraised using the Standards for Reporting Diagnostic Accuracy (STARD) 2015 statement.

Results

The ExoDx Prostate Intelliscore, SelectMDx, Progensa PCA3, Mi-Prostate Score, 4K Score, and Prostate Health Index (PHI) tests were reviewed. Most of the validation studies supporting these tests perform exploratory analyses to determine cut-off values in a post hoc manner, comprise cohorts that are primarily Caucasian, report receiver operating characteristic curves that combine the biomarker’s result with established clinical nomograms and are based on a reference standard (prostate biopsy) that lacks central pathology review. Deficiencies in STARD reporting guidelines include frequent failure to provide a published study protocol, prospective study registration in a registry, a flow diagram, justification for sample size determination, a discussion of adverse events with testing, and information on how missing or indeterminate test results should be managed.

Conclusions

Key validation studies that support many commercially available urine and blood-based biomarkers for prostate cancers have deficiencies in transparency based on STARD reporting guidelines, and limitations in methodology must be considered when deciding when these tests should be applied in clinical practice.

Keywords

Prostate cancer Biomarkers Genomic tests STARD Diagnostic test accuracy Critical appraisal 

Notes

Author contributions

VMN: data collection, analysis, and manuscript writing/editing.

Compliance with ethical standards

Conflict of interest

Vikram Narayan has no conflicts of interest to disclose.

References

  1. 1.
    Grossman DC, Curry SJ, Owens DK et al (2018) Screening for prostate cancer. JAMA 319:1901.  https://doi.org/10.1001/jama.2018.3710 CrossRefGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. CA Cancer J Clin 66:7–30.  https://doi.org/10.3322/caac.21332 CrossRefGoogle Scholar
  3. 3.
    Mallett S, Halligan S, Thompson M et al (2012) Interpreting diagnostic accuracy studies for patient care. BMJ 345:e3999–e3999.  https://doi.org/10.1136/bmj.e3999 CrossRefGoogle Scholar
  4. 4.
    Matulay JT, Wenske S (2018) Genetic signatures on prostate biopsy: clinical implications. Transl Cancer Res 7:S640.  https://doi.org/10.21037/tcr.2018.03.26 CrossRefGoogle Scholar
  5. 5.
    Schmid M, Trinh Q-D, Graefen M et al (2014) The role of biomarkers in the assessment of prostate cancer risk prior to prostate biopsy: which markers matter and how should they be used? World J Urol 32:871–880.  https://doi.org/10.1007/s00345-014-1317-2 CrossRefGoogle Scholar
  6. 6.
    Narayan VM, Konety BR, Warlick C (2017) Novel biomarkers for prostate cancer: an evidence-based review for use in clinical practice. Int J Urol 24:352–360.  https://doi.org/10.1111/iju.13326 CrossRefGoogle Scholar
  7. 7.
    Zapała P, Dybowski B, Poletajew S, Radziszewski P (2018) What can be expected from prostate cancer biomarkers a clinical perspective. Urol Int 100:1–12.  https://doi.org/10.1159/000479982 CrossRefGoogle Scholar
  8. 8.
    McGrath S, Christidis D, Perera M et al (2016) Prostate cancer biomarkers: are we hitting the mark? Prostate Int 4:130–135.  https://doi.org/10.1016/j.prnil.2016.07.002 CrossRefGoogle Scholar
  9. 9.
    Bossuyt PM, Reitsma JB, Bruns DE et al (2015) STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 351:h5527.  https://doi.org/10.1136/bmj.h5527 CrossRefGoogle Scholar
  10. 10.
    Moher D, Hopewell S, Schulz KF et al (2010) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 340:c869–c869.  https://doi.org/10.1136/bmj.c869 CrossRefGoogle Scholar
  11. 11.
    Narayan VM, Cone EB, Smith D et al (2016) Improved reporting of randomized controlled trials in the urologic literature. Eur Urol 70:1044–1049.  https://doi.org/10.1016/j.eururo.2016.07.042 CrossRefGoogle Scholar
  12. 12.
    Han JL, Gandhi S, Bockoven CG et al (2017) The landscape of systematic reviews in urology (1998 to 2015): an assessment of methodological quality. BJU Int 119:638–649.  https://doi.org/10.1111/bju.13653 CrossRefGoogle Scholar
  13. 13.
    Shea BJ, Reeves BC, Wells G et al (2017) AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 358:j4008.  https://doi.org/10.1136/bmj.j4008 CrossRefGoogle Scholar
  14. 14.
    Cohen JF, Korevaar DA, Altman DG et al (2016) STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 6:e012799.  https://doi.org/10.1136/bmjopen-2016-012799 CrossRefGoogle Scholar
  15. 15.
    Sathianathen NJ, Kuntz KM, Alarid-Escudero F et al (2018) Incorporating biomarkers into the primary prostate biopsy setting: a cost-effectiveness analysis. J Urol 2006:1215.  https://doi.org/10.1016/j.juro.2018.06.016 CrossRefGoogle Scholar
  16. 16.
    Denzer K, Kleijmeer MJ, Heijnen HF et al (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113(Pt 19):3365–3374Google Scholar
  17. 17.
    McKiernan J, Donovan MJ, O’Neill V et al (2016) A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol 2:882.  https://doi.org/10.1001/jamaoncol.2016.0097 CrossRefGoogle Scholar
  18. 18.
    Van Neste L, Hendriks RJ, Dijkstra S et al (2016) Detection of high-grade prostate cancer using a urinary molecular biomarker-based risk score. Eur Urol 70:740–748.  https://doi.org/10.1016/j.eururo.2016.04.012 CrossRefGoogle Scholar
  19. 19.
    DeSantis CE, Siegel RL, Sauer AG et al (2016) Cancer statistics for African Americans, 2016: progress and opportunities in reducing racial disparities. CA Cancer J Clin 66:290–308.  https://doi.org/10.3322/caac.21340 CrossRefGoogle Scholar
  20. 20.
    Leeflang MMG, Moons KGM, Reitsma JB, Zwinderman AH (2008) Bias in sensitivity and specificity caused by data-driven selection of optimal cutoff values: mechanisms, magnitude, and solutions. Clin Chem 54:729–737.  https://doi.org/10.1373/clinchem.2007.096032 CrossRefGoogle Scholar
  21. 21.
    Harrell FE, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387.  https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4%3c361:AID-SIM168%3e3.0.CO;2-4 CrossRefGoogle Scholar
  22. 22.
    Ewald B (2006) Post hoc choice of cut points introduced bias to diagnostic research. J Clin Epidemiol 59:798–801.  https://doi.org/10.1016/j.jclinepi.2005.11.025 CrossRefGoogle Scholar
  23. 23.
    Marks LS, Fradet Y, Lim Deras I et al (2007) PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology 69:532–535.  https://doi.org/10.1016/j.urology.2006.12.014 CrossRefGoogle Scholar
  24. 24.
    Aubin SMJ, Reid J, Sarno MJ et al (2010) PCA3 molecular urine test for predicting repeat prostate biopsy outcome in populations at risk: validation in the placebo arm of the dutasteride REDUCE trial. J Urol 184:1947–1952.  https://doi.org/10.1016/j.juro.2010.06.098 CrossRefGoogle Scholar
  25. 25.
    de la Taille A, Irani J, Graefen M et al (2011) Clinical evaluation of the PCA3 assay in guiding initial biopsy decisions. J Urol 185:2119–2125.  https://doi.org/10.1016/j.juro.2011.01.075 CrossRefGoogle Scholar
  26. 26.
    Cornu J-N, Cancel-Tassin G, Egrot C et al (2013) Urine TMPRSS2:ERG fusion transcript integrated with PCA3 score, genotyping, and biological features are correlated to the results of prostatic biopsies in men at risk of prostate cancer. Prostate 73:242–249.  https://doi.org/10.1002/pros.22563 CrossRefGoogle Scholar
  27. 27.
    Tomlins SA, Day JR, Lonigro RJ et al (2016) Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. Eur Urol 70:45–53.  https://doi.org/10.1016/j.eururo.2015.04.039 CrossRefGoogle Scholar
  28. 28.
    Vickers AJ, Cronin AM, Aus G et al (2008) A panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: data from the European Randomized Study of Prostate Cancer Screening in Göteborg Sweden. BMC Med 6:19.  https://doi.org/10.1186/1741-7015-6-19 CrossRefGoogle Scholar
  29. 29.
    Vickers AJ, Cronin AM, Roobol MJ et al (2010) A four-kallikrein panel predicts prostate cancer in men with recent screening: data from the European Randomized Study of Screening for Prostate Cancer, Rotterdam. Clin Cancer Res 16:3232–3239.  https://doi.org/10.1158/1078-0432.CCR-10-0122 CrossRefGoogle Scholar
  30. 30.
    Donovan J, Hamdy F, Neal D et al (2003) Prostate testing for cancer and treatment (ProtecT) feasibility study. Health Technol Assess 7:1–88CrossRefGoogle Scholar
  31. 31.
    Parekh DJ, Punnen S, Sjoberg DD et al (2015) A multi-institutional prospective trial in the USA confirms that the 4K score accurately identifies men with high-grade prostate cancer. Eur Urol 68:464–470.  https://doi.org/10.1016/j.eururo.2014.10.021 CrossRefGoogle Scholar
  32. 32.
    Ankerst DP, Hoefler J, Bock S et al (2014) Prostate cancer prevention trial risk calculator 2.0 for the prediction of low- vs high-grade prostate cancer. Urology 83:1362–1367.  https://doi.org/10.1016/j.urology.2014.02.035 CrossRefGoogle Scholar
  33. 33.
    Mikolajczyk SD, Marker KM, Millar LS et al (2001) A truncated precursor form of prostate-specific antigen is a more specific serum marker of prostate cancer. Cancer Res 61:6958–6963Google Scholar
  34. 34.
    Catalona WJ, Partin AW, Sanda MG et al (2011) A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol 185:1650–1655.  https://doi.org/10.1016/j.juro.2010.12.032 CrossRefGoogle Scholar
  35. 35.
    Yabroff KR, Lund J, Kepka D, Mariotto A (2011) Economic burden of cancer in the United States: estimates, projections, and future research. Cancer Epidemiol Biomark Prev 20:2006–2014.  https://doi.org/10.1158/1055-9965.EPI-11-0650 CrossRefGoogle Scholar
  36. 36.
    Brimo F, Montironi R, Egevad L et al (2013) Contemporary grading for prostate cancer: implications for patient care. Eur Urol 63:892–901.  https://doi.org/10.1016/j.eururo.2012.10.015 CrossRefGoogle Scholar
  37. 37.
    Bachmann LM, Puhan MA, ter Riet G, Bossuyt PM (2006) Sample sizes of studies on diagnostic accuracy: literature survey. BMJ 332:1127–1129.  https://doi.org/10.1136/bmj.38793.637789.2F CrossRefGoogle Scholar
  38. 38.
    Foster MW, Royal CDM, Sharp RR (2006) The routinisation of genomics and genetics: implications for ethical practices. J Med Ethics 32:635–638.  https://doi.org/10.1136/jme.2005.013532 CrossRefGoogle Scholar
  39. 39.
    Bossuyt PM, Reitsma JB, Bruns DE et al (2003) The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Ann Intern Med 138:W1–12CrossRefGoogle Scholar
  40. 40.
    Carter HB, Albertsen PC, Barry MJ et al (2013) Early detection of prostate cancer: AUA Guideline. J Urol 190:419–426.  https://doi.org/10.1016/j.juro.2013.04.119 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of UrologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations