Advertisement

Advances in robotic surgery for pediatric ureteropelvic junction obstruction and vesicoureteral reflux: history, present, and future

  • Arthi Satyanarayan
  • Craig A. PetersEmail author
Topic Paper

Abstract

Purpose

The introduction of robotic surgical technology into urological reconstruction, particularly pediatrics, has introduced new horizons for reducing the morbidity and enhancing the efficacy of surgical repair of congenital conditions in children. In reviewing the evolution of pediatric urological applications of robotic surgery, we wanted to address the different levels of reported utilization of pyeloplasty and ureteral reimplantation as two of the most common procedures.

Methods

Review of the published literature sought to explore the described variation in clinical application of these two common procedures, and the evolution of the practice over time.

Results

Reported outcomes suggest that variations in patient selection, the learning curve and in reporting of outcomes all contribute to the wide variation in utilization of pediatric robotic pyeloplasty and ureteral reimplantation.

Conclusions

These technologies are demonstrating their potential as well as the challenges of use in children and there is a steady evolution of capability. Practitioners should be aware of both the possibilities as well as the risks of such new technology in the care of our patients. This requires thorough and open reporting of outcomes, the willingness to introduce change and integrate new findings into practice.

Keywords

Robotic surgery Pediatric Urology Pyeloplasty Ureteral reimplantation 

Notes

References

  1. 1.
    Peters CA (2004) Robotically assisted surgery in pediatric urology. Urol Clin N Am 31(4):743–752CrossRefGoogle Scholar
  2. 2.
    Howe A, Kozel Z, Palmer L (2017) Robotic surgery in pediatric urology. Asian J Urol 4(1):55–67.  https://doi.org/10.1016/j.ajur.2016.06.002 (Epub 2016 Sep 6. Review) CrossRefGoogle Scholar
  3. 3.
    Finkelstein JB, Levy AC, Silva MV, Murray L, Delaney C, Casale P (2015) How to decide which infant can have robotic surgery? Just do the math. J Pediatr Urol 11(4):170.e1–170.e4.  https://doi.org/10.1016/j.jpurol.2014.11.020 (Epub 2015 Mar 4) CrossRefGoogle Scholar
  4. 4.
    Bowen DK, Faasse MA, Liu DB, Gong EM, Lindgren BW, Johnson EK (2016) Use of pediatric open, laparoscopic and robot-assisted laparoscopic ureteral reimplantation in the United States: 2000–2012. J Urol 196(1):207–212.  https://doi.org/10.1016/j.juro.2016.02.065 (Epub 2016 Feb 13) CrossRefGoogle Scholar
  5. 5.
    Cortesi N, Ferrari P, Zambarda E, Manenti A, Baldini A, Morano FP (1976) Diagnosis of bilateral abdominal cryptorchidism by laparoscopy. Endoscopy 8(1):33–34CrossRefGoogle Scholar
  6. 6.
    Koyle MA, Woo HH, Kavoussi LR (1993) Laparoscopic nephrectomy in the first year of life. J Pediatr Surg 28(5):693–695CrossRefGoogle Scholar
  7. 7.
    Van Batavia JP, Casale P (2014) Robotic surgery in pediatric urology. Curr Urol Rep 15(5):402.  https://doi.org/10.1007/s11934-014-0402-9 (Review) CrossRefGoogle Scholar
  8. 8.
    Kraft BM, Jäger C, Kraft K, Leibl BJ, Bittner R (2004) The AESOP robot system in laparoscopic surgery: increased risk or advantage for surgeon and patient? Surg Endosc 18(8):1216–1223 (Epub 2004 Jun 23) CrossRefGoogle Scholar
  9. 9.
    Allaf ME, Jackman SV, Schulam PG, Cadeddu JA, Lee BR, Moore RG, Kavoussi LR (1998) Laparoscopic visual field. Voice vs foot pedal interfaces for control of the AESOP robot. Surg Endosc 12(12):1415–1418CrossRefGoogle Scholar
  10. 10.
    Passerotti C, Peters CA (2006) Robotic-assisted laparoscopy applied to reconstructive surgeries in children. World J Urol 24(2):193–197CrossRefGoogle Scholar
  11. 11.
    Muneer A, Arya M, Shergill IS, Sharma D, Hammadeh MY, Mushtaq I (2008) Current status of robotic surgery in pediatric urology. Pediatr Surg Int 24(9):973–977.  https://doi.org/10.1007/s00383-008-2208-7 (Epub 2008 Jul 31. Review) CrossRefGoogle Scholar
  12. 12.
    Peters CA, Schlussel RN, Retik AB (1995) Pediatric laparoscopic dismembered pyeloplasty. J Urol 153(6):1962–1965CrossRefGoogle Scholar
  13. 13.
    Peters CA (2009) Pediatric robotic-assisted surgery: too early an assessment? Pediatrics 124(6):1680–1681.  https://doi.org/10.1542/peds.2009-2562 CrossRefGoogle Scholar
  14. 14.
    Casale P, Kojima Y (2009) Robotic-assisted laparoscopic surgery in pediatric urology: an update. Scand J Surg 98(2):110–119 (Review) CrossRefGoogle Scholar
  15. 15.
    Murthy PB, Schadler ED, Orvieto M, Zagaja G, Shalhav AL, Gundeti MS (2018) Setting up a pediatric robotic urology program: a USA institution experience. Int J Urol 25(2):86–93.  https://doi.org/10.1111/iju.13415 (Epub 2017 Jul 22. Review) CrossRefGoogle Scholar
  16. 16.
    Atala A, Kavoussi LR, Goldstein DS, Retik AB, Peters CA (1993) Laparoscopic correction of vesicoureteral reflux. J Urol 150(2 Pt 2):748–751CrossRefGoogle Scholar
  17. 17.
    Ehrlich RM, Gershman A, Fuchs G (1993) Laparoscopic ureteral reimplantation for vesicoureteral reflux: initial case reports. J Endourol 7:S171Google Scholar
  18. 18.
    Janetschek G, Radmayr C, Bartsch G (1995) Laparoscopic ureteral anti-reflux plasty reimplantation. First clinical experience. Ann Urol (Paris) 29(2):101–105Google Scholar
  19. 19.
    Lakshmanan Y, Fung LC (2000) Laparoscopic extravesicular ureteral reimplantation for vesicoureteral reflux: recent technical advances. J Endourol 14(7):589–593 (discussion 593–584) CrossRefGoogle Scholar
  20. 20.
    Peters C (2003) Laparoscopy in paediatric urology: adoption of innovative technology. BJUI 92:52–57CrossRefGoogle Scholar
  21. 21.
    Yeung CK, Sihoe JD, Borzi PA (2005) Endoscopic cross-trigonal ureteral reimplantation under carbon dioxide bladder insufflation: a novel technique. J Endourol 19(3):295–299CrossRefGoogle Scholar
  22. 22.
    Canon SJ, Jayanthi VR, Patel AS (2007) Vesicoscopic cross-trigonal ureteral reimplantation: a minimally invasive option for repair of vesicoureteral reflux. J Urol 178(1):269–273 (discussion 273) CrossRefGoogle Scholar
  23. 23.
    Baek M, Koh CJ (2017) Lessons learned over a decade of pediatric robotic ureteral reimplantation. Investig Clin Urol 58(1):3–11.  https://doi.org/10.4111/icu.2017.58.1.3 (Epub 2017 Jan 9. Review) CrossRefGoogle Scholar
  24. 24.
    Boysen WR, Ellison JS, Kim C, Koh CJ, Noh P, Whittam B, Palmer B, Shukla A, Kirsch A, Gundeti MS (2017) Multi-institutional review of outcomes and complications of robot-assisted laparoscopic extravesical ureteral reimplantation for treatment of primary vesicoureteral reflux in children. J Urol 197(6):1555–1561CrossRefGoogle Scholar
  25. 25.
    Varda BK, Wang Y, Chung BI, Lee RS, Kurtz MP, Nelson CP, Chang SL (2018) Has the robot caught up? National trends in utilization, perioperative outcomes, and cost for open, laparoscopic, and robotic pediatric pyeloplasty in the United States from 2003 to 2015. J Pediatr Urol 14(4):336.e1–336.e8.  https://doi.org/10.1016/j.jpurol.2017.12.010 (Epub 2018 Feb 22. PubMed PMID: 29530407; PubMed Central PMCID: PMC6105565) CrossRefGoogle Scholar
  26. 26.
    Silay MS, Spinoit AF, Undre S, Fiala V, Tandogdu Z, Garmanova T, Guttilla A, Sancaktutar AA, Haid B, Waldert M, Goyal A, Serefoglu EC, Baldassarre E, Manzoni G, Radford A, Subramaniam R, Cherian A, Hoebeke P, Jacobs M, Rocco B, Yuriy R, Zattoni F, Kocvara R, Koh CJ (2016) Global minimally invasive pyeloplasty study in children: results from the Pediatric Urology Expert Group of the European Association of Urology Young Academic Urologists working party. J Pediatr Urol 12(4):229.e1–229.e7.  https://doi.org/10.1016/j.jpurol.2016.04.007 (Epub 2016 May 12) CrossRefGoogle Scholar
  27. 27.
    Kassite I, Braik K, Villemagne T, Lardy H, Binet A (2018) The learning curve of robot-assisted laparoscopic pyeloplasty in children: a multi-outcome approach. J Pediatr Urol 14(6):570.e1–570.e10.  https://doi.org/10.1016/j.jpurol.2018.07.019 (Epub 2018 Aug 2 PubMed PMID: 30177385) CrossRefGoogle Scholar
  28. 28.
    Timberlake MD, Peters CA (2017) Current status of robotic-assisted surgery for the treatment of vesicoureteral reflux in children. Curr Opin Urol 27(1):20–26 (Review) CrossRefGoogle Scholar
  29. 29.
    Grimsby GM, Dwyer ME, Jacobs MA, Ost MC, Schneck FX, Cannon GM, Gargollo PC (2015) Multi-institutional review of outcomes of robot-assisted laparoscopic extravesical ureteral reimplantation. J Urol 193(5 Suppl):1791–1795.  https://doi.org/10.1016/j.juro.2014.07.128 (Epub 2014 Oct 7) CrossRefGoogle Scholar
  30. 30.
    Baek M, Silay MS, Au JK, Huang GO, Elizondo RA, Puttmann KT, Janzen NK, Seth A, Roth DR, Koh CJ (2018) Does the use of 5 mm instruments affect the outcomes of robot-assisted laparoscopic pyeloplasty in smaller working spaces? A comparative analysis of infants and older children. J Pediatr Urol 14(6):537.e1–537.e6.  https://doi.org/10.1016/j.jpurol.2018.06.010 (Epub 2018 Jul 6 PubMed PMID: 30007500) CrossRefGoogle Scholar
  31. 31.
    Casale P, Lendvay TS (2010) Robotic hypospadias surgery: a new evolution. J Robot Surg 3(4):239–244.  https://doi.org/10.1007/s11701-009-0165-3 (Epub 2009 Nov 26) CrossRefGoogle Scholar
  32. 32.
    Sorensen MD, Delostrinos C, Johnson MH, Grady RW, Lendvay TS (2011) Comparison of the learning curve and outcomes of robotic assisted pediatric pyeloplasty. J Urol 185(6 Suppl):2517–2522.  https://doi.org/10.1016/j.juro.2011.01.021 (Epub 2011 Apr 28) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of UrologyUniversity of Texas SouthwesternDallasUSA
  2. 2.Pediatric UrologyChildren’s Health System TexasDallasUSA

Personalised recommendations