World Journal of Urology

, Volume 37, Issue 11, pp 2325–2333 | Cite as

Which flexible ureteroscope is the best for upper tract urothelial carcinoma treatment?

  • Etienne Xavier Keller
  • Steeve Doizi
  • Luca Villa
  • Olivier TraxerEmail author
Topic Paper



To present attributes of currently available flexible ureteroscopes to define the best flexible ureteroscope for upper tract urothelial carcinoma (UTUC) treatment.

Materials and methods

Scopus and Medline databases were searched for articles relating to performance of flexible ureteroscopes. A consensus for final inclusion of articles judged to be relevant for UTUC treatment was reached between the authors. Instrument characteristics were extracted from manufacturers’ product brochures.


Smaller cross-sectional size of instruments is associated with increased probability for successful primary access to the upper urinary tract. The smallest flexible ureteroscopes are fiberoptic scopes. Smaller ureteroscopes also allow comparatively increased irrigation flow at constant intrarenal pressure. Digital flexible ureteroscopes achieve superior image quality compared to their fiberoptic counterparts, at the price of lower end-deflection ability. Image enhancement technologies such as narrow-band imaging (NBI), photodynamic diagnosis (PDD) and Image 1-S (formerly SPIES) are based on subjective image interpretation by the operator. NBI and PDD significantly increase tumor detection rate. The highest subjective image quality score of the Image 1-S technology is reached by the “Clara + Chroma” mode. Single-use ureteroscopes offer potential advantages over reusable scopes, including sterility, absence of contamination, immediate availability and exemption of previous instrument wear.


Miniaturization, digital image caption and image enhancement technologies seem to be the major determinants defining the best flexible ureteroscope for UTUC treatment. The impact of further factors, such as distal tip design, torque, working channel position, risk of contamination, as well as upcoming technological innovations should be evaluated in randomized controlled trials.


Upper tract urothelial carcinoma Ureteroscopy Miniaturization Digital Image enhancement technology 


Author contribution

EXK: project development, data collection, data analysis and manuscript writing. SD: data analysis and manuscript editing. LV: data analysis and manuscript editing. OT: project development, data analysis and manuscript editing.

Compliance with ethical standards

Conflict of interest

Prof. Olivier Traxer is a consultant for Coloplast, Rocamed, Olympus, EMS, Boston Scientific and IPG Medical. Dr. Steeve Doizi is a consultant for Coloplast. Dr. Etienne Xavier Keller is supported by a Travel Grant from the University Hospital Zurich and by a grant from the Kurt and Senta Herrmann Foundation.

Ethical approval

All the procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

No informed consents were necessary for this study, since no research directly involving human participants and/or animals was performed in this study.


  1. 1.
    Munoz JJ, Ellison LM (2000) Upper tract urothelial neoplasms: incidence and survival during the last 2 decades. J Urol 164(5):1523–1525CrossRefGoogle Scholar
  2. 2.
    Visser O, Adolfsson J, Rossi S, Verne J, Gatta G, Maffezzini M, Franks KN, RARECARE working group (2012) Incidence and survival of rare urogenital cancers in Europe. Eur J Cancer 48(4):456–464. CrossRefPubMedGoogle Scholar
  3. 3.
    Soria F, Shariat SF, Lerner SP, Fritsche HM, Rink M, Kassouf W, Spiess PE, Lotan Y, Ye D, Fernandez MI, Kikuchi E, Chade DC, Babjuk M, Grollman AP, Thalmann GN (2017) Epidemiology, diagnosis, preoperative evaluation and prognostic assessment of upper-tract urothelial carcinoma (UTUC). World J Urol 35(3):379–387. CrossRefPubMedGoogle Scholar
  4. 4.
    Roupret M, Babjuk M, Comperat E, Zigeuner R, Sylvester RJ, Burger M, Cowan NC, Gontero P, van Rhijn BWG, Mostafid AH, Palou J, Shariat SF (2018) European association of urology guidelines on upper urinary tract urothelial carcinoma: 2017 update. Eur Urol 73(1):111–122. CrossRefPubMedGoogle Scholar
  5. 5.
    Roupret M, Babjuk M, Burger M, Compérat E, Cowan NC, Gontero P, Mostafid AH, Palou J, van Rhijn BWG, Shariat SF, Sylvester RJ, Zigeuner R (2019) EAU guidelines on upper urinary tract urothelial cell carcinoma. Accessed 2 Feb 2019
  6. 6.
    Giusti G, Proietti S, Villa L, Cloutier J, Rosso M, Gadda GM, Doizi S, Suardi N, Montorsi F, Gaboardi F, Traxer O (2016) Current standard technique for modern flexible ureteroscopy: tips and tricks. Eur Urol 70(1):188–194. CrossRefPubMedGoogle Scholar
  7. 7.
    Zelenko N, Coll D, Rosenfeld AT, Smith RC (2004) Normal ureter size on unenhanced helical CT. AJR Am J Roentgenol 182(4):1039–1041. CrossRefPubMedGoogle Scholar
  8. 8.
    Dragos L, Martis SM, Somani B, Bres-Niewada E, Sener TE, Buttice S, Wiseman OJ, Iacoboaie CT, Doizi S, Traxer O (2018) “Torque” Abilities of reusable and single-use flexible ureterorenoscopes: a novel in vitro evaluation of twelve scopes. J Urol 199(4S):e476–e477Google Scholar
  9. 9.
    Johnson GB, Portela D, Grasso M (2006) Advanced ureteroscopy: wireless and sheathless. J Endourol 20(8):552–555. CrossRefPubMedGoogle Scholar
  10. 10.
    Hudson RG, Conlin MJ, Bagley DH (2005) Ureteric access with flexible ureteroscopes: effect of the size of the ureteroscope. BJU Int 95(7):1043–1044. CrossRefPubMedGoogle Scholar
  11. 11.
    Hubosky SG, Healy KA, Grasso M, Bagley DH (2014) Accessing the difficult ureter and the importance of ureteroscope miniaturization: history is repeating itself. Urology 84(4):740–742. CrossRefPubMedGoogle Scholar
  12. 12.
    Ng YH, Somani BK, Dennison A, Kata SG, Nabi G, Brown S (2010) Irrigant flow and intrarenal pressure during flexible ureteroscopy: the effect of different access sheaths, working channel instruments, and hydrostatic pressure. J Endourol 24(12):1915–1920. CrossRefPubMedGoogle Scholar
  13. 13.
    Sener TE, Cloutier J, Villa L, Marson F, Butticè S, Doizi S, Traxer O (2016) Can we provide low intrarenal pressures with good irrigation flow by decreasing the size of ureteral access sheaths? J Endourol 30(1):49–55. CrossRefPubMedGoogle Scholar
  14. 14.
    De Coninck V, Keller EX, Rodriguez-Monsalve M, Audouin M, Doizi S, Traxer O (2018) Systematic review on ureteral access sheaths: facts and myths. BJU Int. CrossRefPubMedGoogle Scholar
  15. 15.
    Proietti S, Dragos L, Somani BK, Buttice S, Talso M, Emiliani E, Baghdadi M, Giusti G, Traxer O (2017) In vitro comparison of maximum pressure developed by irrigation systems in a kidney model. J Endourol. CrossRefPubMedGoogle Scholar
  16. 16.
    Lama DJ, Safiullah S, Patel RM, Lee TK, Balani JP, Zhang L, Okhunov Z, Margulis V, Savage SJ, Uchio E, Landman J (2018) Multi-institutional evaluation of upper urinary tract biopsy using backloaded cup biopsy forceps, a nitinol basket, and standard cup biopsy forceps. Urology 117:89–94. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Thomsen HS, Dorph S, Olsen S (1981) Pyelorenal backflow in normal and ischemic rabbit kidneys. Invest Radiol 16(3):206–214CrossRefGoogle Scholar
  18. 18.
    Keller EX, De Coninck V, Traxer O (2019) Next generation fiberoptic and digital ureteroscopes. Urol Clin N Am. CrossRefGoogle Scholar
  19. 19.
    Hopkins HH (1954) A flexible fibrescope, using static scanning. Nature 173(4392):39–41. CrossRefGoogle Scholar
  20. 20.
    Goddard JC (2018) A series of fortunate events: harold hopkins. JCU 11(1_suppl):4–8. CrossRefGoogle Scholar
  21. 21.
    Tan YH, Preminger GM (2004) Advances in video and imaging in ureteroscopy. Urol Clin N Am 31(1):33–42. CrossRefGoogle Scholar
  22. 22.
    Abdelshehid C, Ahlering MT, Chou D, Park HK, Basillote J, Lee D, Kim I, Eichel L, Protsenko D, Wong B, McDougall E, Clayman RV (2005) Comparison of flexible ureteroscopes: deflection, irrigant flow and optical characteristics. J Urol 173(6):2017–2021. CrossRefPubMedGoogle Scholar
  23. 23.
    Talso M, Proietti S, Emiliani E, Gallioli A, Dragos L, Orosa A, Servian P, Barreiro A, Giusti G, Montanari E, Somani B, Traxer O (2018) Comparison of flexible ureterorenoscope quality of vision: an in vitro study. J Endourol 32(6):523–528. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Binbay M, Yuruk E, Akman T, Ozgor F, Seyrek M, Ozkuvanci U, Berberoglu Y, Muslumanoglu AY (2010) Is there a difference in outcomes between digital and fiberoptic flexible ureterorenoscopy procedures? J Endourol 24(12):1929–1934. CrossRefPubMedGoogle Scholar
  25. 25.
    Somani BK, Al-Qahtani SM, de Medina SD, Traxer O (2013) Outcomes of flexible ureterorenoscopy and laser fragmentation for renal stones: comparison between digital and conventional ureteroscope. Urology 82(5):1017–1019. CrossRefPubMedGoogle Scholar
  26. 26.
    Usawachintachit M, Isaacson DS, Taguchi K, Tzou DT, Hsi RS, Sherer BA, Stoller ML, Chi T (2017) A prospective case-control study comparing LithoVue, a single-use, flexible disposable ureteroscope, with flexible, reusable fiber-optic ureteroscopes. J Endourol 31(5):468–475. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mandalapu RS, Remzi M, de Reijke TM, Margulis V, Palou J, Kapoor A, Yossepowitch O, Coleman J, Traxer O, Anderson JK, Catto J, de la Rosette J, O’Brien T, Zlotta A, Matin SF (2017) Update of the ICUD-SIU consultation on upper tract urothelial carcinoma 2016: treatment of low-risk upper tract urothelial carcinoma. World J Urol 35(3):355–365. CrossRefPubMedGoogle Scholar
  28. 28.
    Dragos LB, Somani BK, Sener ET, Buttice S, Proietti S, Ploumidis A, Iacoboaie CT, Doizi S, Traxer O (2017) Which flexible ureteroscopes (digital vs. fiber-optic) can easily reach the difficult lower pole calices and have better end-tip deflection: in vitro study on K-box. A PETRA evaluation. J Endourol 31(7):630–637. CrossRefPubMedGoogle Scholar
  29. 29.
    Gono K (2015) Narrow band imaging: technology basis and research and development history. Clin Endosc 48(6):476–480. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Faber DJ, Mik EG, Aalders MC, van Leeuwen TG (2003) Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography. Opt Lett 28(16):1436–1438CrossRefGoogle Scholar
  31. 31.
    Traxer O, Geavlete B, de Medina SG, Sibony M, Al-Qahtani SM (2011) Narrow-band imaging digital flexible ureteroscopy in detection of upper urinary tract transitional-cell carcinoma: initial experience. J Endourol 25(1):19–23. CrossRefGoogle Scholar
  32. 32.
    Jocham D, Stepp H, Waidelich R (2008) Photodynamic diagnosis in urology: state-of-the-art. Eur Urol 53(6):1138–1148. CrossRefPubMedGoogle Scholar
  33. 33.
    Somani BK, Moseley H, Eljamel MS, Nabi G, Kata SG (2010) Photodynamic diagnosis (PDD) for upper urinary tract transitional cell carcinoma (UT-TCC): evolution of a new technique. Photodiagn Photodyn Ther 7(1):39–43. CrossRefGoogle Scholar
  34. 34.
    Kata SG, Nabi G, Eljamel S, Chlosta P, Moseley H, Aboumarzouk OM (2014) Photodynamic diagnostic ureterorenoscopy with orally administered 5-aminolaevulinic acid as photosensitiser: how I do it. Urol Int 93(4):384–388. CrossRefPubMedGoogle Scholar
  35. 35.
    Osman E, Alnaib Z, Kumar N (2017) Photodynamic diagnosis in upper urinary tract urothelial carcinoma: a systematic review. Arab J Urol 15(2):100–109. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kata SG, Aboumarzouk OM, Zreik A, Somani B, Ahmad S, Nabi G, Buist R, Goodman C, Chlosta P, Golabek T, Moseley H (2016) Photodynamic diagnostic ureterorenoscopy: a valuable tool in the detection of upper urinary tract tumour. Photodiagn Photodyn Ther 13:255–260. CrossRefGoogle Scholar
  37. 37.
    Emiliani E, Talso M, Baghdadi M, Barreiro A, Orosa A, Servian P, Gavrilov P, Proietti S, Traxer O (2017) Evaluation of the Spies (TM) modalities image quality. Int Br J Urol 43(3):476–480. CrossRefGoogle Scholar
  38. 38.
    Kamphuis GM, de Bruin DM, Brandt MJ, Knoll T, Conort P, Lapini A, Dominguez-Escrig JL, de la Rosette JJ (2016) Comparing image perception of bladder tumors in four different storz professional image enhancement system modalities using the iSPIES App. J Endourol 30(5):602–608. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gregory E, Simmons D, Weinburg JJ (1988) Care and sterilisation of endourologic instruments. Urol Clin N Am 15(3):541–546Google Scholar
  40. 40.
    Fuselier HA Jr, Mason C (1997) Liquid sterilization versus high level disinfection in the urologic office. Urology 50(3):337–340. CrossRefPubMedGoogle Scholar
  41. 41.
    McDougall EM, Alberts G, Deal KJ, Nagy JM 3rd (2001) Does the cleaning technique influence the durability of the < 9F flexible ureteroscope? J Endourol 15(6):615–618. CrossRefPubMedGoogle Scholar
  42. 42.
    Sooriakumaran P, Kaba R, Andrews HO, Buchholz NP (2005) Evaluation of the mechanisms of damage to flexible ureteroscopes and suggestions for ureteroscope preservation. Asian J Androl 7(4):433–438. CrossRefPubMedGoogle Scholar
  43. 43.
    Monga M, Best S, Venkatesh R, Ames C, Lee C, Kuskowski M, Schwartz S, Vanlangendock R, Skenazy J, Landman J (2006) Durability of flexible ureteroscopes: a randomized, prospective study. J Urol 176(1):137–141. CrossRefPubMedGoogle Scholar
  44. 44.
    Abraham JB, Abdelshehid CS, Lee HJ, Box GN, Deane LA, Le T, Jellison F, Borin JF, Manipon A, McDougall EM, Clayman RV (2007) Rapid communication: effects of Steris 1 sterilization and Cidex ortho-phthalaldehyde high-level disinfection on durability of new-generation flexible ureteroscopes. J Endourol 21(9):985–992. CrossRefPubMedGoogle Scholar
  45. 45.
    Semins MJ, George S, Allaf ME, Matlaga BR (2009) Ureteroscope cleaning and sterilization by the urology operating room team: the effect on repair costs. J Endourol 23(6):903–905. CrossRefPubMedGoogle Scholar
  46. 46.
    Legemate JD, Kamphuis GM, Freund JE, Baard J, Zanetti SP, Catellani M, Oussoren HW, de la Rosette JJ (2018) Durability of flexible ureteroscopes: a prospective evaluation of longevity, the factors that affect it, and damage mechanisms. Eur Urol Focus 1:10. CrossRefGoogle Scholar
  47. 47.
    Chang CL, Su LH, Lu CM, Tai FT, Huang YC, Chang KK (2013) Outbreak of ertapenem-resistant Enterobacter cloacae urinary tract infections due to a contaminated ureteroscope. J Hosp Infect 85(2):118–124. CrossRefPubMedGoogle Scholar
  48. 48.
    Ofstead CL, Heymann OL, Quick MR, Johnson EA, Eiland JE, Wetzler HP (2017) The effectiveness of sterilization for flexible ureteroscopes: a real-world study. Am J Infect Control 45(8):888–895. CrossRefPubMedGoogle Scholar
  49. 49.
    Emiliani E, Traxer O (2017) Single use and disposable flexible ureteroscopes. Curr Opin Urol 27(2):176–181. CrossRefPubMedGoogle Scholar
  50. 50.
    Proietti S, Somani B, Sofer M, Pietropaolo A, Rosso M, Saitta G, Gaboardi F, Traxer O, Giusti G (2017) The “Body Mass Index” of flexible ureteroscopes. J Endourol 31(10):1090–1095. CrossRefPubMedGoogle Scholar
  51. 51.
    Ludwig WW, Lee G, Ziemba JB, Ko JS, Matlaga BR (2017) Evaluating the ergonomics of flexible ureteroscopy. J Endourol 31(10):1062–1066. CrossRefPubMedGoogle Scholar
  52. 52.
    Proietti S, Dragos L, Molina W, Doizi S, Giusti G, Traxer O (2016) Comparison of new single-use digital flexible ureteroscope versus nondisposable fiber optic and digital ureteroscope in a cadaveric model. J Endourol 30(6):655–659. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Urology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
  2. 2.Sorbonne Université, Service d’Urologie, Assistance-Publique Hôpitaux de Paris, Hôpital TenonParisFrance
  3. 3.Sorbonne Université, Groupe de Recherche Clinique sur la Lithiase Urinaire (GRC n°20), Hôpital TenonParisFrance
  4. 4.Division of Experimental Oncology/Unit of Urology, URIIRCCS Ospedale San RaffaeleMilanItaly

Personalised recommendations