Advertisement

Controversies in MR targeted biopsy: alone or combined, cognitive versus software-based fusion, transrectal versus transperineal approach?

  • Giancarlo MarraEmail author
  • Guillaume Ploussard
  • Jurgen Futterer
  • Massimo Valerio
  • the EAU-YAU Prostate Cancer Working Party
Invited Review

Abstract

Purpose

To review the evidence addressing current controversies around prostate biopsy. Specific questions explored were (1) mpMRI targeted (TgBx) alone versus combined with systematic (SBx) biopsy; (2) cognitive versus software-based targeted biopsy; (3) transrectal or transperineal route (TP).

Methods

We performed a literature search of peer-reviewed English language articles using PubMed and the words “prostate” AND “biopsy”. Web search was implemented by manual search.

Results

Prostate mpMRI is revolutionizing prostate cancer (PCa) diagnosis, and TgBx improves the detection of clinically significant (cs) PCa compared to SBx alone. The utility of combining SBx–TgBx is variable, but in non-expert centres the two should be combined to overcome learning curve-limitations. Whether SBx should be maintained in expert centres depends on what rate of missed cancer the urological community and patients are prone to accept; this has implications for insignificant cancer diagnosis as well. TgBx may be more precise using a software-based-approach despite cognitive TgBx proved non-inferior in some studies, and may be used for large accessible lesions. TP-biopsies are feasible in an in-office setting. Avoidance of the rectum and accessibility of virtually all prostate areas are attractive features. However, this has to be balanced with local setting and resources implications. Ongoing trials will shed light on unsolved issues.

Conclusion

The prostate biopsy strategy should be tailored to local expertise, needs and resources availability. Targeted biopsy enhance the ratio between cs and insignificant cancer diagnosis, although some csPCa might be missed. Software-based TgBx are likely to be more precise, especially for new users, although the additional cost might be not justified in all cases. TPBx have ideal attributes for performing TgBx and avoiding infection, although this has resources implications.

Keywords

Prostate biopsy MRI Targeted biopsy Transperineal Transrectal Cognitive 

Notes

Acknowledgements

The members of the EAU-YAU Prostate Cancer Working Party: G. Ploussard, P. J. L. De Visschere, I. Tsaur, D. Tilki, P. Ost, G. Gandaglia, R. C. N. Van Den Bergh, C. Surcel, A. Kretschmer, I. Heidegger, M. Valerio, H. Borgmann, R. Mathieu.

Author contributions

Protocol/project development: GM, MV; Data collection or management: GM; Data analysis: GM, MV; Manuscript writing: GM; Manuscript editing and review for important intellectual contents: MV, GP, JF.

Funding

None.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

References

  1. 1.
    Hodge KK, McNeal JE, Terris MK, Stamey TA (1989) Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J Urol 142:71–74 (discussion 4–5) CrossRefGoogle Scholar
  2. 2.
    Jones JS, Patel A, Schoenfield L, Rabets JC, Zippe CD, Magi-Galluzzi C (2006) Saturation technique does not improve cancer detection as an initial prostate biopsy strategy. J Urol 175:485–488CrossRefGoogle Scholar
  3. 3.
    Vyas L, Acher P, Kinsella J et al (2013) Indications, results and safety profile of transperineal sector biopsies (TPSB) of the prostate: a single centre experience of 634 cases. BJU Int 114:32–37CrossRefGoogle Scholar
  4. 4.
    Marra G, Eldred-Evans D, Challacombe B et al (2017) Pathological concordance between prostate biopsies and radical prostatectomy using transperineal sector mapping biopsies: validation and comparison with transrectal biopsies. Urol Int 99:168–176CrossRefGoogle Scholar
  5. 5.
    NICE Interventional Procedure Guidelines IPG 475 (2014) (https://www.nice.org.uk/guidance/ipg475). Accessed Jan 2014
  6. 6.
    Mottet N, Bellmunt J, Bolla M et al (2017) EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 71:618–629CrossRefGoogle Scholar
  7. 7.
    Eichler K, Hempel S, Wilby J, Myers L, Bachmann LM, Kleijnen J (2006) Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol 175:1605–1612CrossRefGoogle Scholar
  8. 8.
    Schouten MG, van der Leest M, Pokorny M et al (2017) Why and where do we miss significant prostate cancer with multi-parametric magnetic resonance imaging followed by magnetic resonance-guided and transrectal ultrasound-guided biopsy in biopsy-naive men? Eur Urol 71:896–903CrossRefGoogle Scholar
  9. 9.
    Marra G, Gontero P, Valerio M (2016) Changing the prostate cancer management pathway: why focal therapy is a step forward. Arch Esp Urol 69:271–280Google Scholar
  10. 10.
    Futterer JJ, Briganti A, De Visschere P et al (2015) Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol 68:1045–1053CrossRefGoogle Scholar
  11. 11.
    Bravo AA, Sheth SG, Chopra S (2001) Liver biopsy. N Engl J Med 15(344):495–500CrossRefGoogle Scholar
  12. 12.
    Burman KD, Wartofsky L, CLINICAL PRACTICE (2015) Thyroid nodules. N Engl J Med 373:2347–2356CrossRefGoogle Scholar
  13. 13.
    Marconi L, Dabestani S, Lam TB et al (2016) Systematic review and meta-analysis of diagnostic accuracy of percutaneous renal tumour biopsy. Eur Urol 69:660–673CrossRefGoogle Scholar
  14. 14.
    Larscheid RC, Thorpe PE, Scott WJ (1998) Percutaneous transthoracic needle aspiration biopsy. Chest 114:704–709CrossRefGoogle Scholar
  15. 15.
    Borofsky S, George AK, Gaur S et al (2018) What are we missing? False-negative cancers at multiparametric MR imaging of the prostate. Radiology 286:186–195CrossRefGoogle Scholar
  16. 16.
    Truong M, Hollenberg G, Weinberg E, Messing EM, Miyamoto H, Frye TP (2017) Impact of Gleason subtype on prostate cancer detection using multiparametric magnetic resonance imaging: correlation with final histopathology. J Urol 198(2):316–321CrossRefGoogle Scholar
  17. 17.
    Siddiqui MM, Rais-Bahrami S, Turkbey B et al (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 27(313):390–397CrossRefGoogle Scholar
  18. 18.
    Baco E, Rud E, Eri LM et al (2016) A randomized controlled trial to assess and compare the outcomes of two-core prostate biopsy guided by fused magnetic resonance and transrectal ultrasound images and traditional 12-core systematic biopsy. Eur Urol 69:149–156CrossRefGoogle Scholar
  19. 19.
    Rosenkrantz AB, Verma S, Choyke P et al (2016) Prostate magnetic resonance imaging and magnetic resonance imaging targeted biopsy in patients with a prior negative biopsy: a consensus statement by AUA and SAR. J Urol 196:1613–1618CrossRefGoogle Scholar
  20. 20.
    Scheltema MJ, Tay KJ, Postema AW et al (2017) Utilization of multiparametric prostate magnetic resonance imaging in clinical practice and focal therapy: report from a Delphi consensus project. World J Urol 35:695–701CrossRefGoogle Scholar
  21. 21.
    Wegelin O, van Melick HHE, Hooft L et al (2017) Comparing three different techniques for magnetic resonance imaging-targeted prostate biopsies: a systematic review of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration. Is there a preferred technique? Eur Urol 71:517–531CrossRefGoogle Scholar
  22. 22.
    Davis P, Paul E, Grummet J (2015) Current practice of prostate biopsy in Australia and New Zealand: a survey. Urol Ann 7:315–319Google Scholar
  23. 23.
    Ahmed HU, El-Shater Bosaily A, Brown LC et al (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071):815–822CrossRefGoogle Scholar
  24. 24.
    Valerio M, Donaldson I, Emberton M et al (2014) Detection of clinically significant prostate cancer using magnetic resonance imaging–ultrasound fusion targeted biopsy: a systematic review. Eur Urol 68(1):8–19CrossRefGoogle Scholar
  25. 25.
    Schoots IG, Roobol MJ, Nieboer D, Bangma CH, Steyerberg EW, Hunink MG (2014) Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol 68:438CrossRefGoogle Scholar
  26. 26.
    Porpiglia F, Manfredi M, Mele F et al (2017) Diagnostic pathway with multiparametric magnetic resonance imaging versus standard pathway: results from a randomized prospective study in biopsy-naive patients with suspected prostate cancer. Eur Urol 72:282–288CrossRefGoogle Scholar
  27. 27.
    Tonttila PP, Lantto J, Paakko E et al (2016) Prebiopsy multiparametric magnetic resonance imaging for prostate cancer diagnosis in biopsy-naive men with suspected prostate cancer based on elevated prostate-specific antigen values: results from a randomized prospective blinded controlled trial. Eur Urol 69:419–425CrossRefGoogle Scholar
  28. 28.
    Panebianco V, Barchetti F, Sciarra A et al (2015) Multiparametric magnetic resonance imaging vs. standard care in men being evaluated for prostate cancer: a randomized study. Urol Oncol 33:17CrossRefGoogle Scholar
  29. 29.
    Park BK, Park JW, Park SY et al (2011) Prospective evaluation of 3-T MRI performed before initial transrectal ultrasound-guided prostate biopsy in patients with high prostate-specific antigen and no previous biopsy. AJR Am J Roentgenol 197:W876–W881CrossRefGoogle Scholar
  30. 30.
    Kasivisvanathan V, Rannikko AS, Borghi M et al (2018) MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 378:1767–1777CrossRefGoogle Scholar
  31. 31.
    Haffner J, Lemaitre L, Puech P et al (2011) Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int 108:E171–E178CrossRefGoogle Scholar
  32. 32.
    Ploussard G, Borgmann H, Briganti A et al (2018) Positive pre-biopsy MRI: are systematic biopsies still useful in addition to targeted biopsies? World J Urol.  https://doi.org/10.1007/s00345-018-2399-z Google Scholar
  33. 33.
    Valerio M, Donaldson I, Emberton M et al (2015) Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review. Eur Urol 68:8–19CrossRefGoogle Scholar
  34. 34.
    Salami SS, Ben-Levi E, Yaskiv O et al (2015) In patients with a previous negative prostate biopsy and a suspicious lesion on magnetic resonance imaging, is a 12-core biopsy still necessary in addition to a targeted biopsy? BJU Int 115:562–570CrossRefGoogle Scholar
  35. 35.
    Albisinni S, Aoun F, Noel A et al (2018) Are concurrent systematic cores needed at the time of targeted biopsy in patients with prior negative prostate biopsies? Progres en urologie: journal de l’Association francaise d’urologie et de la Societe francaise d’urologie 28:18–24CrossRefGoogle Scholar
  36. 36.
    Radtke JP, Kuru TH, Boxler S et al (2015) Comparative analysis of transperineal template saturation prostate biopsy versus magnetic resonance imaging targeted biopsy with magnetic resonance imaging-ultrasound fusion guidance. J Urol 193:87–94CrossRefGoogle Scholar
  37. 37.
    Cash H, Gunzel K, Maxeiner A et al (2016) Prostate cancer detection on transrectal ultrasonography-guided random biopsy despite negative real-time magnetic resonance imaging/ultrasonography fusion-guided targeted biopsy: reasons for targeted biopsy failure. BJU Int. 118:35–43CrossRefGoogle Scholar
  38. 38.
    Moldovan PC, Van den Broeck T, Sylvester R et al (2017) What is the negative predictive value of multiparametric magnetic resonance imaging in excluding prostate cancer at biopsy? A systematic review and meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel. Eur Urol 72:250–266CrossRefGoogle Scholar
  39. 39.
    Oderda M, Marra G, Albisinni S et al (2018) Accuracy of elastic fusion biopsy in daily practice: results of a multicenter study of 2115 patients. Int J Urol Off J Jpn Urol Assoc 25:990Google Scholar
  40. 40.
    Mischinger J, Kaufmann S, Russo GI et al (2017) Targeted vs systematic robot-assisted transperineal magnetic resonance imaging-transrectal ultrasonography fusion prostate biopsy. BJU Int 125:791Google Scholar
  41. 41.
    Borkowetz A, Hadaschik B, Platzek I et al (2018) Prospective comparison of transperineal magnetic resonance imaging/ultrasonography fusion biopsy and transrectal systematic biopsy in biopsy-naive patients. BJU Int 121:53–60CrossRefGoogle Scholar
  42. 42.
    Dell’Oglio P, Stabile A, Dias BH et al (2018) Impact of multiparametric MRI and MRI-targeted biopsy on pre-therapeutic risk assessment in prostate cancer patients candidate for radical prostatectomy. World J Urol.  https://doi.org/10.1007/s00345-018-2360-1 Google Scholar
  43. 43.
    Marra G, Ploussard G, Ost P et al (2018) Focal therapy in localised prostate cancer: real-world urological perspective explored in a cross-sectional European survey. Urol Oncol 36:529Google Scholar
  44. 44.
    van der Poel HG, van den Bergh RCN, Briers E et al (2018) Focal therapy in primary localised prostate cancer: the European Association of Urology Position in 2018. Eur Urol 74(1):84–91CrossRefGoogle Scholar
  45. 45.
    Gaziev G, Wadhwa K, Barrett T et al (2016) Defining the learning curve for multiparametric magnetic resonance imaging (MRI) of the prostate using MRI-transrectal ultrasonography (TRUS) fusion-guided transperineal prostate biopsies as a validation tool. BJU Int 117:80–86CrossRefGoogle Scholar
  46. 46.
    Dimitroulis P, Rabenalt R, Nini A et al (2018) Multiparametric magnetic resonance imaging/ultrasound fusion prostate biopsy—are 2 biopsy cores per magnetic resonance imaging lesion required? J Urol 200:1030–1034CrossRefGoogle Scholar
  47. 47.
    Schimmoller L, Quentin M, Blondin D et al (2016) Targeted MRI-guided prostate biopsy: are two biopsy cores per MRI-lesion required? Eur Radiol 26:3858–3864CrossRefGoogle Scholar
  48. 48.
    Porpiglia F, De Luca S, Passera R et al (2017) Multiparametric magnetic resonance/ultrasound fusion prostate biopsy: number and spatial distribution of cores for better index tumor detection and characterization. J Urol 198:58–64CrossRefGoogle Scholar
  49. 49.
    Robertson NL, Hu Y, Ahmed HU, Freeman A, Barratt D, Emberton M (2014) Prostate cancer risk inflation as a consequence of image-targeted biopsy of the prostate: a computer simulation study. Eur Urol 65:628–634CrossRefGoogle Scholar
  50. 50.
    Neill MG, Toi A, Lockwood GA, Evans A, Tammsalu L, Fleshner NE (2008) Systematic lateral prostate biopsy—are the benefits worth the costs? J Urol 179:1321–1326CrossRefGoogle Scholar
  51. 51.
    Delongchamps NB, Peyromaure M, Schull A et al (2013) Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J Urol 189:493–499CrossRefGoogle Scholar
  52. 52.
    Oderda M, Faletti R, Battisti G et al (2016) Prostate cancer detection rate with koelis fusion biopsies versus cognitive biopsies: a comparative study. Urol Int 97:230–237CrossRefGoogle Scholar
  53. 53.
    Puech P, Rouviere O, Renard-Penna R et al (2013) Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsy—prospective multicenter study. Radiology 268:461–469CrossRefGoogle Scholar
  54. 54.
    Wysock JS, Rosenkrantz AB, Huang WC et al (2014) A prospective, blinded comparison of magnetic resonance (MR) imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS trial. Eur Urol 66:343–351CrossRefGoogle Scholar
  55. 55.
    Valerio M, McCartan N, Freeman A, Punwani S, Emberton M, Ahmed HU (2015) Visually directed vs. software-based targeted biopsy compared to transperineal template mapping biopsy in the detection of clinically significant prostate cancer. Urol Oncol 33:424CrossRefGoogle Scholar
  56. 56.
    De Silva T, Fenster A, Cool DW et al (2013) 2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy. Med Phys 40:022904CrossRefGoogle Scholar
  57. 57.
    Hu Y, Ahmed HU, Taylor Z et al (2012) MR to ultrasound registration for image-guided prostate interventions. Med Image Anal 16:687–703CrossRefGoogle Scholar
  58. 58.
    Baumann M, Mozer P, Daanen V, Troccaz J (2012) Prostate biopsy tracking with deformation estimation. Med Image Anal 16:562–576CrossRefGoogle Scholar
  59. 59.
    Moldovan P, Udrescu C, Ravier E et al (2016) Accuracy of elastic fusion of prostate magnetic resonance and transrectal ultrasound images under routine conditions: a prospective multi-operator study. PLoS One 11:e0169120CrossRefGoogle Scholar
  60. 60.
    Meng X, Rosenkrantz AB, Huang R et al (2018) The institutional learning curve of magnetic resonance imaging-ultrasound fusion targeted prostate biopsy: temporal improvements in cancer detection in 4 years. J Urol 200:1022–1029CrossRefGoogle Scholar
  61. 61.
    Mager R, Brandt MP, Borgmann H, Gust KM, Haferkamp A, Kurosch M (2017) From novice to expert: analyzing the learning curve for MRI-transrectal ultrasonography fusion-guided transrectal prostate biopsy. Int Urol Nephrol 49:1537–1544CrossRefGoogle Scholar
  62. 62.
    Friedl A, Schneeweiss J, Sevcenco S et al (2018) In-bore 3.0-T magnetic resonance imaging-guided transrectal targeted prostate biopsy in a repeat biopsy population: diagnostic performance, complications, and learning curve. Urology 114:139–146CrossRefGoogle Scholar
  63. 63.
    Stabile A, Dell’Oglio P, Gandaglia G et al (2018) Not all multiparametric magnetic resonance imaging—targeted biopsies are equal: the impact of the type of approach and operator expertise on the detection of clinically significant prostate cancer. Eur Urol Oncol 1:120–128CrossRefGoogle Scholar
  64. 64.
    Barrett T, Patterson AJ, Koo BC et al (2016) Targeted transperineal biopsy of the prostate has limited additional benefit over background cores for larger MRI-identified tumors. World J Urol 34:501–508CrossRefGoogle Scholar
  65. 65.
    Wegelin O, van Melick HHE (2015) Fusion target biopsy of the prostate using real-time ultrasound and mr images A multicenter RCT on target biopsy techniques in the diagnosis of prostate cancer. J Clin Trials 5:248CrossRefGoogle Scholar
  66. 66.
    Emiliozzi P, Corsetti A, Tassi B, Federico G, Martini M, Pansadoro V (2003) Best approach for prostate cancer detection: a prospective study on transperineal versus transrectal six-core prostate biopsy. Urology 61:961–966CrossRefGoogle Scholar
  67. 67.
    Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36:697–705CrossRefGoogle Scholar
  68. 68.
    Loeb S, van den Heuvel S, Zhu X, Bangma CH, Schroder FH, Roobol MJ (2012) Infectious complications and hospital admissions after prostate biopsy in a European randomized trial. Eur Urol 61:1110–1114CrossRefGoogle Scholar
  69. 69.
    Loeb S, Vellekoop A, Ahmed HU et al (2013) Systematic review of complications of prostate biopsy. Eur Urol 64:876–892CrossRefGoogle Scholar
  70. 70.
    Liss MA, Taylor SA, Batura D et al (2014) Fluoroquinolone resistant rectal colonization predicts risk of infectious complications after transrectal prostate biopsy. J Urol 192:1673–1678CrossRefGoogle Scholar
  71. 71.
    Chung HS, Hwang EC, Yu HS et al (2017) Prevalence of fluoroquinolone-resistant rectal flora in patients undergoing transrectal ultrasound-guided prostate needle biopsy: a prospective multicenter study. Int J Urol Off J Jpn Urol Assoc 25(3):278–283Google Scholar
  72. 72.
    Liss MA, Ehdaie B, Loeb S et al (2017) An update of the American urological association white paper on the prevention and treatment of the more common complications related to prostate biopsy. J Urol 198:329–334CrossRefGoogle Scholar
  73. 73.
    Bonkat G, Bartoletti R, Bruyère F, Geerlings SE, Wagenlehner F, Wullt B, Cai T, Köves B, Pilatz A, Pradere B, Veeratterapillay R (2017) EAU guidelines on urological infections. http://uroweb.org/guideline/urological-infections/. Accessed 15 Feb 2018
  74. 74.
    Carignan A, Roussy JF, Lapointe V, Valiquette L, Sabbagh R, Pepin J (2012) Increasing risk of infectious complications after transrectal ultrasound-guided prostate biopsies: time to reassess antimicrobial prophylaxis? Eur Urol 62:453–459CrossRefGoogle Scholar
  75. 75.
    Seitz M, Stief C, Waidelich R, Bader M, Tilki D (2017) Transrectal ultrasound guided prostate biopsy in the era of increasing fluoroquinolone resistance: prophylaxis with single-dose ertapenem. World J Urol 35:1681–1688CrossRefGoogle Scholar
  76. 76.
    Bloomfield MG, Page MJ, McLachlan AG, Studd RC, Blackmore TK (2017) Routine ertapenem prophylaxis for transrectal ultrasound guided prostate biopsy does not select for carbapenem resistant organisms: a prospective cohort study. J Urol 198:362–368CrossRefGoogle Scholar
  77. 77.
    Pepdjonovic L, Tan GH, Huang S et al (2017) Zero hospital admissions for infection after 577 transperineal prostate biopsies using single-dose cephazolin prophylaxis. World J Urol 35:1199–1203CrossRefGoogle Scholar
  78. 78.
    Pepe P, Aragona F (2013) Morbidity after transperineal prostate biopsy in 3000 patients undergoing 12 vs 18 vs more than 24 needle cores. Urology 81:1142–1146CrossRefGoogle Scholar
  79. 79.
    Grummet J, Pepdjonovic L, Moon D (2017) Re: Marco Borghesi, Hashim Ahmed, Robert Nam, et al. Complications after systematic, random, and image-guided prostate biopsy. Eur Urol 71:353–365CrossRefGoogle Scholar
  80. 80.
    Grummet JP, Weerakoon M, Huang S et al (2014) Sepsis and ‘superbugs’: should we favour the transperineal over the transrectal approach for prostate biopsy? BJU Int 114:384–388Google Scholar
  81. 81.
    Meyer AR, Joice GA, Schwen ZR, Partin AW, Allaf ME, Gorin MA (2018) Initial experience performing in-office ultrasound-guided transperineal prostate biopsy under local anesthesia using the precision point transperineal access system. Urology 115:8–13CrossRefGoogle Scholar
  82. 82.
    Kuru TH, Wadhwa K, Chang RT et al (2013) Definitions of terms, processes and a minimum dataset for transperineal prostate biopsies: a standardization approach of the Ginsburg Study Group for Enhanced Prostate Diagnostics. BJU Int 112:568–577CrossRefGoogle Scholar
  83. 83.
    Borghesi M, Ahmed H, Nam R et al (2017) Complications after systematic, random, and image-guided prostate biopsy. Eur Urol 71:353–365CrossRefGoogle Scholar
  84. 84.
    Wadhwa K, Carmona-Echeveria L, Kuru T et al (2017) Transperineal prostate biopsies for diagnosis of prostate cancer are well tolerated: a prospective study using patient-reported outcome measures. Asian J Androl 19:62–66Google Scholar
  85. 85.
    Cerruto MA, Vianello F, D’Elia C, Artibani W, Novella G (2014) Transrectal versus transperineal 14-core prostate biopsy in detection of prostate cancer: a comparative evaluation at the same Institution. Archivio Italiano di Urologia e Andrologia 86:284CrossRefGoogle Scholar
  86. 86.
    Novella G, Ficarra V, Galfano A et al (2003) Pain assessment after original transperineal prostate biopsy using a coaxial needle. Urology 62:689–692CrossRefGoogle Scholar
  87. 87.
    Iremashvili VV, Chepurov AK, Kobaladze KM, Gamidov SI (2010) Periprostatic local anesthesia with pudendal block for transperineal ultrasound-guided prostate biopsy: a randomized trial. Urology 75:1023–1027CrossRefGoogle Scholar
  88. 88.
    DiBianco JM, Mullins JK, Allaway M (2016) Ultrasound guided, freehand transperineal prostate biopsy: an alternative to the transrectal approach. Urol Pract 3:134–140CrossRefGoogle Scholar
  89. 89.
    Rosario DJ, Lane JA, Metcalfe C et al (2012) Short term outcomes of prostate biopsy in men tested for cancer by prostate specific antigen: prospective evaluation within ProtecT study. BMJ 9(344):d7894CrossRefGoogle Scholar
  90. 90.
    Giannarini G, Crestani A, Rossanese M, Ficarra V (2017) Multiparametric magnetic resonance imaging targeted biopsy for early detection of prostate cancer: all that glitters is not gold! Eur Urol 71:904–906CrossRefGoogle Scholar
  91. 91.
    Grummet J, Pepdjonovic L, Huang S, Anderson E, Hadaschik B (2017) Transperineal vs. transrectal biopsy in MRI targeting. Transl Androl Urol 6:368–375CrossRefGoogle Scholar
  92. 92.
    Hakozaki Y, Matsushima H, Kumagai J et al (2017) A prospective study of magnetic resonance imaging and ultrasonography (MRI/US)-fusion targeted biopsy and concurrent systematic transperineal biopsy with the average of 18-cores to detect clinically significant prostate cancer. BMC Urol 12(17):117CrossRefGoogle Scholar
  93. 93.
    Hansen NL, Barrett T, Kesch C et al (2018) Multicentre evaluation of magnetic resonance imaging supported transperineal prostate biopsy in biopsy-naive men with suspicion of prostate cancer. BJU Int 122(1):40–49CrossRefGoogle Scholar
  94. 94.
    Pepe P, Garufi A, Priolo G, Pennisi M (2017) Transperineal versus transrectal MRI/TRUS fusion targeted biopsy: detection rate of clinically significant prostate cancer. Clin Genitourin Cancer 15:e33–e36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of UrologySan Giovanni Battista Hospital, Città della Salute e della Scienza and University of TurinTurinItaly
  2. 2.Department of UrologySaint Jean Languedoc Hospital and Institut Universitaire du Cancer Toulouse OncopoleToulouseFrance
  3. 3.Department of Radiology and Nuclear MedicineRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  4. 4.Department of UrologyCentre Hospitalier Universitaire VaudoisLausanneSwitzerland

Personalised recommendations