Role of androgen receptor splice variants, their clinical relevance and treatment options

  • S. WachEmail author
  • H. Taubert
  • M. Cronauer
Topic Paper



In this review, we summarize the importance of AR variants with a particular focus on clinically relevant members of this family.


A non-systematic literature review was performed based on Medline and PubMed.


Endocrine therapy represents the central paradigm for the management of prostate cancer. Eventually, in response to androgen ablation therapy, several resistance mechanisms against the endocrine therapy might develop that can circumvent the therapy approaches. One specific resistance mechanism that has gained increasing attention is the generation of alternatively spliced variants of the androgen receptor, with AR-V7 being the most prominent. More broadly, AR-V7 is one member of a group of alternatively spliced AR variants that share a common feature, the missing ligand-binding domain. These ΔLBD androgen receptor variants have shown the capability to induce androgen receptor-mediated gene transcription even under conditions of androgen deprivation and to drive cancer progression.


The methods used for detecting AR-Vs, at least on the mRNA level, are well-advanced and harbor the potential to be introduced into clinical diagnostics. It is important to note, that the testing, especially of AR-V7 has its limitations in predicting treatment response. More promising is the great number of active clinical trials aimed at reducing the AR-Vs, and using this to re-sensitize CRPC towards endocrine treatment might provide additional treatment options for CRPC patients in the future.


Androgen receptor Splice variant AR-V Clinical relevance 


Authors’ contribution

SW: manuscript writing and editing. HT: manuscript writing and editing. MC: manuscript writing and editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

345_2018_2619_MOESM1_ESM.xlsx (13 kb)
Supplementary material 1 (XLSX 12 kb)


  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. CrossRefGoogle Scholar
  2. 2.
    Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, Fossati N, Gross T, Henry AM, Joniau S, Lam TB, Mason MD, Matveev VB, Moldovan PC, van den Bergh RCN, Van den Broeck T, van der Poel HG, van der Kwast TH, Rouviere O, Schoots IG, Wiegel T, Cornford P (2017) EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 71(4):618–629. CrossRefGoogle Scholar
  3. 3.
    de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F, Staffurth JN, Mainwaring P, Harland S, Flaig TW, Hutson TE, Cheng T, Patterson H, Hainsworth JD, Ryan CJ, Sternberg CN, Ellard SL, Flechon A, Saleh M, Scholz M, Efstathiou E, Zivi A, Bianchini D, Loriot Y, Chieffo N, Kheoh T, Haqq CM, Scher HI, Investigators C-A (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364(21):1995–2005. CrossRefGoogle Scholar
  4. 4.
    Attard G, Reid AH, Auchus RJ, Hughes BA, Cassidy AM, Thompson E, Oommen NB, Folkerd E, Dowsett M, Arlt W, de Bono JS (2012) Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. J Clin Endocrinol Metab 97(2):507–516. CrossRefGoogle Scholar
  5. 5.
    Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, Wongvipat J, Smith-Jones PM, Yoo D, Kwon A, Wasielewska T, Welsbie D, Chen CD, Higano CS, Beer TM, Hung DT, Scher HI, Jung ME, Sawyers CL (2009) Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324(5928):787–790. CrossRefGoogle Scholar
  6. 6.
    Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E, Rathkopf D, Shelkey J, Yu EY, Alumkal J, Hung D, Hirmand M, Seely L, Morris MJ, Danila DC, Humm J, Larson S, Fleisher M, Sawyers CL, Prostate Cancer Foundation/Department of Defense Prostate Cancer Clinical Trials C (2010) Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet 375(9724):1437–1446CrossRefGoogle Scholar
  7. 7.
    Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C, Palotie A, Tammela T, Isola J, Kallioniemi OP (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9(4):401–406. CrossRefGoogle Scholar
  8. 8.
    Santer FR, Erb HH, McNeill RV (2015) Therapy escape mechanisms in the malignant prostate. Semin Cancer Biol 35:133–144. CrossRefGoogle Scholar
  9. 9.
    Cronauer MV, Schulz WA, Burchardt T, Anastasiadis AG, de la Taille A, Ackermann R, Burchardt M (2003) The androgen receptor in hormone-refractory prostate cancer: relevance of different mechanisms of androgen receptor signaling (review). Int J Oncol 23(4):1095–1102Google Scholar
  10. 10.
    Jenster G, van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkmann AO (1991) Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol 5(10):1396–1404. CrossRefGoogle Scholar
  11. 11.
    Prescott J, Coetzee GA (2006) Molecular chaperones throughout the life cycle of the androgen receptor. Cancer Lett 231(1):12–19. CrossRefGoogle Scholar
  12. 12.
    Deslypere JP, Young M, Wilson JD, McPhaul MJ (1992) Testosterone and 5 alpha-dihydrotestosterone interact differently with the androgen receptor to enhance transcription of the MMTV-CAT reporter gene. Mol Cell Endocrinol 88(1–3):15–22CrossRefGoogle Scholar
  13. 13.
    Saporita AJ, Zhang Q, Navai N, Dincer Z, Hahn J, Cai X, Wang Z (2003) Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J Biol Chem 278(43):41998–42005. CrossRefGoogle Scholar
  14. 14.
    van Royen ME, van Cappellen WA, de Vos C, Houtsmuller AB, Trapman J (2012) Stepwise androgen receptor dimerization. J Cell Sci 125(Pt 8):1970–1979. CrossRefGoogle Scholar
  15. 15.
    Kumar MV, Jones EA, Grossmann ME, Blexrud MD, Tindall DJ (1994) Identification and characterization of a suppressor element in the 5′-flanking region of the mouse androgen receptor gene. Nucleic Acids Res 22(18):3693–3698CrossRefGoogle Scholar
  16. 16.
    Yeap BB, Voon DC, Vivian JP, McCulloch RK, Thomson AM, Giles KM, Czyzyk-Krzeska MF, Furneaux H, Wilce MC, Wilce JA, Leedman PJ (2002) Novel binding of HuR and poly(C)-binding protein to a conserved UC-rich motif within the 3′-untranslated region of the androgen receptor messenger RNA. J Biol Chem 277(30):27183–27192. CrossRefGoogle Scholar
  17. 17.
    Cai C, He HH, Chen S, Coleman I, Wang H, Fang Z, Chen S, Nelson PS, Liu XS, Brown M, Balk SP (2011) Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 20(4):457–471. CrossRefGoogle Scholar
  18. 18.
    Liu LL, Xie N, Sun S, Plymate S, Mostaghel E, Dong X (2014) Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene 33(24):3140–3150. CrossRefGoogle Scholar
  19. 19.
    Hickey TE, Irvine CM, Dvinge H, Tarulli GA, Hanson AR, Ryan NK, Pickering MA, Birrell SN, Hu DG, Mackenzie PI, Russell R, Caldas C, Raj GV, Dehm SM, Plymate SR, Bradley RK, Tilley WD, Selth LA (2015) Expression of androgen receptor splice variants in clinical breast cancers. Oncotarget 6(42):44728–44744. CrossRefGoogle Scholar
  20. 20.
    Kallio HML, Hieta R, Latonen L, Brofeldt A, Annala M, Kivinummi K, Tammela TL, Nykter M, Isaacs WB, Lilja HG, Bova GS, Visakorpi T (2018) Constitutively active androgen receptor splice variants AR-V3, AR-V7 and AR-V9 are co-expressed in castration-resistant prostate cancer metastases. Br J Cancer. Google Scholar
  21. 21.
    De Laere B, van Dam PJ, Whitington T, Mayrhofer M, Diaz EH, Van den Eynden G, Vandebroek J, Del-Favero J, Van Laere S, Dirix L, Gronberg H, Lindberg J (2017) Comprehensive profiling of the androgen receptor in liquid biopsies from castration-resistant prostate cancer reveals novel intra-AR structural variation and splice variant expression patterns. Eur Urol 72(2):192–200. CrossRefGoogle Scholar
  22. 22.
    Hu R, Lu C, Mostaghel EA, Yegnasubramanian S, Gurel M, Tannahill C, Edwards J, Isaacs WB, Nelson PS, Bluemn E, Plymate SR, Luo J (2012) Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 72(14):3457–3462. CrossRefGoogle Scholar
  23. 23.
    Krause WC, Shafi AA, Nakka M, Weigel NL (2014) Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells. Int J Biochem Cell Biol 54:49–59. CrossRefGoogle Scholar
  24. 24.
    Sahu B, Laakso M, Ovaska K, Mirtti T, Lundin J, Rannikko A, Sankila A, Turunen JP, Lundin M, Konsti J, Vesterinen T, Nordling S, Kallioniemi O, Hautaniemi S, Janne OA (2011) Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J 30(19):3962–3976. CrossRefGoogle Scholar
  25. 25.
    Gao N, Zhang J, Rao MA, Case TC, Mirosevich J, Wang Y, Jin R, Gupta A, Rennie PS, Matusik RJ (2003) The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol Endocrinol 17(8):1484–1507. CrossRefGoogle Scholar
  26. 26.
    Shiota M, Yokomizo A, Fujimoto N, Naito S (2011) Androgen receptor cofactors in prostate cancer: potential therapeutic targets of castration-resistant prostate cancer. Curr Cancer Drug Targets 11(7):870–881CrossRefGoogle Scholar
  27. 27.
    Moses MA, Kim YS, Rivera-Marquez GM, Oshima N, Watson MJ, Beebe KE, Wells C, Lee S, Zuehlke AD, Shao H, Bingman WE 3rd, Kumar V, Malhotra SV, Weigel NL, Gestwicki JE, Trepel JB, Neckers LM (2018) Targeting the Hsp40/Hsp70 chaperone axis as a novel strategy to treat castration-resistant prostate cancer. Cancer Res 78(14):4022–4035. CrossRefGoogle Scholar
  28. 28.
    Liu C, Lou W, Yang JC, Liu L, Armstrong CM, Lombard AP, Zhao R, Noel ODV, Tepper CG, Chen HW, Dall’Era M, Evans CP, Gao AC (2018) Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer. Nat Commun 9(1):4700. CrossRefGoogle Scholar
  29. 29.
    Azoitei A, Merseburger AS, Godau B, Hoda MR, Schmid E, Cronauer MV (2017) C-terminally truncated constitutively active androgen receptor variants and their biologic and clinical significance in castration-resistant prostate cancer. J Steroid Biochem Mol Biol 166:38–44. CrossRefGoogle Scholar
  30. 30.
    Streicher W, Zengerling F, Laschak M, Weidemann W, Hopfner M, Schrader AJ, Jentzmik F, Schrader M, Cronauer MV (2012) AR-Q640X, a model to study the effects of constitutively active C-terminally truncated AR variants in prostate cancer cells. World J Urol 30(3):333–339. CrossRefGoogle Scholar
  31. 31.
    Cai L, Tsai YH, Wang P, Wang J, Li D, Fan H, Zhao Y, Bareja R, Lu R, Wilson EM, Sboner A, Whang YE, Zheng D, Parker JS, Earp HS, Wang GG (2018) ZFX mediates non-canonical oncogenic functions of the androgen receptor splice variant 7 in castrate-resistant prostate cancer. Mol Cell. Google Scholar
  32. 32.
    Zarif JC, Miranti CK (2016) The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance. Cell Signal 28(5):348–356. CrossRefGoogle Scholar
  33. 33.
    Thelen P, Taubert H, Duensing S, Kristiansen G, Merseburger AS, Cronauer MV (2018) The impact of the androgen receptor splice variant AR-V7 on the prognosis and treatment of advanced prostate cancer. Aktuelle Urol. Google Scholar
  34. 34.
    Hornberg E, Ylitalo EB, Crnalic S, Antti H, Stattin P, Widmark A, Bergh A, Wikstrom P (2011) Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS ONE 6(4):e19059. CrossRefGoogle Scholar
  35. 35.
    Bernemann C, Schnoeller TJ, Luedeke M, Steinestel K, Boegemann M, Schrader AJ, Steinestel J (2017) Expression of AR-V7 in circulating tumour cells does not preclude response to next generation androgen deprivation therapy in patients with castration resistant prostate cancer. Eur Urol 71(1):1–3. CrossRefGoogle Scholar
  36. 36.
    Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Zhu Y, Silberstein JL, Taylor MN, Maughan BL, Denmeade SR, Pienta KJ, Paller CJ, Carducci MA, Eisenberger MA, Luo J (2017) Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J Clin Oncol 35(19):2149–2156. CrossRefGoogle Scholar
  37. 37.
    Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM, Nelson PS, Montgomery RB (2011) Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res 17(18):5913–5925. CrossRefGoogle Scholar
  38. 38.
    Hoefer J, Akbor M, Handle F, Ofer P, Puhr M, Parson W, Culig Z, Klocker H, Heidegger I (2016) Critical role of androgen receptor level in prostate cancer cell resistance to new generation antiandrogen enzalutamide. Oncotarget 7(37):59781–59794. CrossRefGoogle Scholar
  39. 39.
    Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM (2013) Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res 73(2):483–489. CrossRefGoogle Scholar
  40. 40.
    Chen X, Bernemann C, Tolkach Y, Heller M, Nientiedt C, Falkenstein M, Herpel E, Jenzer M, Grullich C, Jager D, Sultmann H, Duensing A, Perner S, Cronauer MV, Stephan C, Debus J, Schrader AJ, Kristiansen G, Hohenfellner M, Duensing S (2018) Overexpression of nuclear AR-V7 protein in primary prostate cancer is an independent negative prognostic marker in men with high-risk disease receiving adjuvant therapy. Urol Oncol 36(4):119–161. CrossRefGoogle Scholar
  41. 41.
    Hillebrand AC, Pizzolato LS, Neto BS, Branchini G, Brum IS (2018) Androgen receptor isoforms expression in benign prostatic hyperplasia and primary prostate cancer. PLoS ONE 13(7):e0200613. CrossRefGoogle Scholar
  42. 42.
    Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M, Nadal R, Paller CJ, Denmeade SR, Carducci MA, Eisenberger MA, Luo J (2015) Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol 1(5):582–591. CrossRefGoogle Scholar
  43. 43.
    Onstenk W, Sieuwerts AM, Kraan J, Van M, Nieuweboer AJ, Mathijssen RH, Hamberg P, Meulenbeld HJ, De Laere B, Dirix LY, van Soest RJ, Lolkema MP, Martens JW, van Weerden WM, Jenster GW, Foekens JA, de Wit R, Sleijfer S (2015) Efficacy of cabazitaxel in castration-resistant prostate cancer is independent of the presence of AR-V7 in circulating tumor cells. Eur Urol 68(6):939–945. CrossRefGoogle Scholar
  44. 44.
    Scher HI, Lu D, Schreiber NA, Louw J, Graf RP, Vargas HA, Johnson A, Jendrisak A, Bambury R, Danila D, McLaughlin B, Wahl J, Greene SB, Heller G, Marrinucci D, Fleisher M, Dittamore R (2016) Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol 2(11):1441–1449. CrossRefGoogle Scholar
  45. 45.
    Kohli M, Ho Y, Hillman DW, Van Etten JL, Henzler C, Yang R, Sperger JM, Li Y, Tseng E, Hon T, Clark T, Tan W, Carlson RE, Wang L, Sicotte H, Thai H, Jimenez R, Huang H, Vedell PT, Eckloff BW, Quevedo JF, Pitot HC, Costello BA, Jen J, Wieben ED, Silverstein KAT, Lang JM, Wang L, Dehm SM (2017) Androgen receptor variant AR-V9 is coexpressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance. Clin Cancer Res 23(16):4704–4715. CrossRefGoogle Scholar
  46. 46.
    Bastos DA, Antonarakis ES (2016) Galeterone for the treatment of advanced prostate cancer: the evidence to date. Drug Des Dev Ther 10:2289–2297. CrossRefGoogle Scholar
  47. 47.
    Liu C, Lou W, Zhu Y, Nadiminty N, Schwartz CT, Evans CP, Gao AC (2014) Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin Cancer Res 20(12):3198–3210. CrossRefGoogle Scholar
  48. 48.
    Gillis JL, Selth LA, Centenera MM, Townley SL, Sun S, Plymate SR, Tilley WD, Butler LM (2013) Constitutively-active androgen receptor variants function independently of the HSP90 chaperone but do not confer resistance to HSP90 inhibitors. Oncotarget 4(5):691–704. CrossRefGoogle Scholar
  49. 49.
    Ferraldeschi R, Welti J, Powers MV, Yuan W, Smyth T, Seed G, Riisnaes R, Hedayat S, Wang H, Crespo M, Nava Rodrigues D, Figueiredo I, Miranda S, Carreira S, Lyons JF, Sharp S, Plymate SR, Attard G, Wallis N, Workman P, de Bono JS (2016) Second-generation HSP90 inhibitor onalespib blocks mRNA splicing of androgen receptor variant 7 in prostate cancer cells. Cancer Res 76(9):2731–2742. CrossRefGoogle Scholar
  50. 50.
    Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, Wu X, Stack EC, Loda M, Liu T, Xu H, Cato L, Thornton JE, Gregory RI, Morrissey C, Vessella RL, Montironi R, Magi-Galluzzi C, Kantoff PW, Balk SP, Liu XS, Brown M (2012) EZH2 oncogenic activity in castration-resistant prostate cancer cells is polycomb-independent. Science 338(6113):1465–1469. CrossRefGoogle Scholar
  51. 51.
    Zhang H, Shang YP, Chen HY, Li J (2017) Histone deacetylases function as novel potential therapeutic targets for cancer. Hepatol Res 47(2):149–159. CrossRefGoogle Scholar
  52. 52.
    Kaushik D, Vashistha V, Isharwal S, Sediqe SA, Lin MF (2015) Histone deacetylase inhibitors in castration-resistant prostate cancer: molecular mechanism of action and recent clinical trials. Ther Adv Urol 7(6):388–395. CrossRefGoogle Scholar
  53. 53.
    Li Y, Sarkar FH (2016) Role of BioResponse 3,3′-Diindolylmethane in the treatment of human prostate cancer: clinical experience. Med Princ Pract 25(Suppl 2):11–17. CrossRefGoogle Scholar
  54. 54.
    Chen H, Zhou L, Wu X, Li R, Wen J, Sha J, Wen X (2016) The PI3K/AKT pathway in the pathogenesis of prostate cancer. Front Biosci (Landmark Ed) 21:1084–1091CrossRefGoogle Scholar
  55. 55.
    Kim SB, Dent R, Im SA, Espie M, Blau S, Tan AR, Isakoff SJ, Oliveira M, Saura C, Wongchenko MJ, Kapp AV, Chan WY, Singel SM, Maslyar DJ, Baselga J, Investigators L (2017) Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 18(10):1360–1372. CrossRefGoogle Scholar
  56. 56.
    Niu H, Manfredi M, Ecsedy JA (2015) Scientific rationale supporting the clinical development strategy for the investigational aurora A kinase inhibitor alisertib in cancer. Front Oncol 5:189. CrossRefGoogle Scholar
  57. 57.
    Patel A, Fong L (2018) Immunotherapy for prostate cancer: where do we go from here? Part 2: Checkpoint inhibitors, immunotherapy combinations, tumor microenvironment modulation, and cellular therapies. Oncology (Williston Park) 32(6):e65–e73Google Scholar
  58. 58.
    Huggins C (1965) Two principles in endocrine therapy of cancers: hormone deprival and hormone interference. Cancer Res 25(7):1163–1167Google Scholar
  59. 59.
    Teply BA, Wang H, Luber B, Sullivan R, Rifkind I, Bruns A, Spitz A, DeCarli M, Sinibaldi V, Pratz CF, Lu C, Silberstein JL, Luo J, Schweizer MT, Drake CG, Carducci MA, Paller CJ, Antonarakis ES, Eisenberger MA, Denmeade SR (2018) Bipolar androgen therapy in men with metastatic castration-resistant prostate cancer after progression on enzalutamide: an open-label, phase 2, multicohort study. Lancet Oncol 19(1):76–86. CrossRefGoogle Scholar
  60. 60.
    Schweizer MT, Antonarakis ES, Denmeade SR (2017) Bipolar androgen therapy: a paradoxical approach for the treatment of castration-resistant prostate cancer. Eur Urol 72(3):323–325. CrossRefGoogle Scholar
  61. 61.
    Chua ML, Bristow RG (2016) Testosterone in androgen receptor signaling and DNA Repair: enemy or frenemy? Clin Cancer Res 22(13):3124–3126. CrossRefGoogle Scholar
  62. 62.
    Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, Agrawal AA, Caleb B, Csibi A, Sean E, Fekkes P, Karr C, Klimek V, Lai G, Lee L, Kumar P, Lee SC, Liu X, Mackenzie C, Meeske C, Mizui Y, Padron E, Park E, Pazolli E, Peng S, Prajapati S, Taylor J, Teng T, Wang J, Warmuth M, Yao H, Yu L, Zhu P, Abdel-Wahab O, Smith PG, Buonamici S (2018) H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med 24(4):497–504. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Urology and Pediatric Urology, University Hospital ErlangenFriedrich Alexander-University Erlangen–NürnbergErlangenGermany
  2. 2.Department of UrologyUniversity Hospital Schleswig-HolsteinLübeckGermany

Personalised recommendations