Advertisement

Comparative Metabolomic and Transcriptome Analysis Reveal Distinct Flavonoid Biosynthesis Regulation Between Petals of White and Purple Phalaenopsis amabilis

  • Xiaoqing Meng
  • Ge Li
  • Lingya Gu
  • Yu Sun
  • Zongyun Li
  • Jingran Liu
  • Xiaoqing Wu
  • Tingting DongEmail author
  • Mingku ZhuEmail author
Article
  • 21 Downloads

Abstract

Orchids (Phalaenopsis amabilis), renowned for their extraordinary floral diversity which implies the complex flower color development, are one of the most valuable research materials for molecular biology studies. However, the genetic mechanisms underlying flower color formation in this non-model plant remain unclear. Here, the biochemical and molecular basis of the flavonoid/anthocyanin biosynthesis between purple petal cultivar (PP) and white petal cultivar (WP) was investigated. The results revealed that 142 differential flavonoid-related metabolites were identified using LC–MS/MS method, and the primary anthocyanins were identified as cyanidin derivatives. Moreover, RNA-seq revealed a total of 9523 upregulated and 6941 downregulated genes were detected. GO and KEGG analysis of DEGs indicated metabolic pathways were preferentially upregulated in PP. The expression of most known genes encoding the enzymes in anthocyanin and related derivative biosynthesis was significantly higher in PP than in WP, especially the downstream ones. We hypothesized that altered flavanone and flavone accumulation may lead to pigment elimination in WP, and the limited flux in cyanidin biosynthesis pathway seems to be the most likely reason for the colorless petal. Besides, 115 differentially expressed regulatory genes relating to anthocyanin biosynthesis were also detected, including MYB, bHLH, WD40, WRKY, MADS and bZIP. Subsequently, high consistency was observed between the results of qRT-PCR and those of RNA-seq. collectively, this study provides a comprehensive metabolic and transcriptional dataset for Phalaenopsis, the informative list of candidate structural and regulatory genes associated with purple trait offer a valuable opportunity to unravel the genetic mechanism underlying flower color formation in Phalaenopsis.

Keywords

Anthocyanin biosynthesis Differentially expressed genes Metabolomic analysis Phalaenopsis amabilis Transcriptome sequencing 

Abbreviations

PAL

Phenylalanine ammonia lyase

C4H

Cinnamate 4-hydroxylase

4CL

4-CoumarateCoA ligase

CHS

Chalcone synthase

CHI

Chalcone isomerase

F3H

Flavone 3-hydroxylase

F3′H

Flavonoid 3′,-hydroxylase

F3′5′H

Flavonoid 3′,5′-hydroxylase

DFR

Dihydroflavonol reductase

ANS

Anthocyanidin synthase

UFGT

UPD glucose: flavonoid-3-O-glucosyltransferase

DHK

Dihydrokaempferol

DHQ

Dihydroquercetin

DHM

Dihydromyricetin

FLS

Flavonol synthase

FNS

Flavone synthase

HPLC

High-performance liquid chromatography

qRT-PCR

Quantitative real-time PCR

Notes

Acknowledgements

The authors thank Mingzhi Li (Genepioneer Biotechnologies, Nanjing, China) for the assistance in transcriptome data analysis. This work was supported by National Natural Science Foundation of China (31700226), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Natural Science Foundation of Jiangsu Province (BK20160215), Graduate Innovation Project of Jiangsu Normal University (KYCX17-1619), and Science and Technology Program of Ministry of Housing and Urban–Rural Development of China (2016-K1-028).

Author Contributions

MZ and XM designed the experiments, analyzed the data and wrote the manuscript. TD and ZL analyzed the data and improved manuscript quality. XM, GL, LG, YS, JL and XW analyzed the data and performed the experiments. All authors have read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

344_2019_10025_MOESM1_ESM.pdf (1.2 mb)
Supplementary file1 (PDF 1189 kb)
344_2019_10025_MOESM2_ESM.xlsx (1.2 mb)
Supplementary file2 (XLSX 1228 kb)

References

  1. Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13(3):99–102PubMedCrossRefGoogle Scholar
  2. An JP, Qu FJ, Yao JF, Wang XN, You CX, Wang XF, Hao YJ (2017) The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research 4:17023PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106PubMedPubMedCentralCrossRefGoogle Scholar
  4. Cecil S, Ducreux LJM, Hancock RD, Hedley PE, Holm DG, Mcdougall GJ, Mcnicol JW, Jenny M, Morris WL, Sungurtas JA (2010) Flavonoid profiling and transcriptome analysis reveals new gene–metabolite correlations in tubers of Solanum tuberosum L. J Exp Bot 61(4):1225CrossRefGoogle Scholar
  5. Chen W, Gong L, Guo Z, Wang W, Zhang H, Liu X, Yu S, Xiong L, Luo J (2013) A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Molecular Plant 6(6):1769–1780PubMedCrossRefGoogle Scholar
  6. Chen Y, Mao Y, Liu H, Yu F, Li S, Yin T (2014) Transcriptome analysis of differentially expressed genes relevant to variegation in peach flowers. PLoS ONE 9(6):e90842PubMedPubMedCentralCrossRefGoogle Scholar
  7. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676PubMedPubMedCentralCrossRefGoogle Scholar
  8. Crifò T, Petrone G, Lo CL, LoPiero AR (2012) Short cold storage enhances the anthocyanin contents and level of transcripts related to their biosynthesis in blood oranges. J Agric Food Chem 60(1):476–481PubMedCrossRefGoogle Scholar
  9. Feng K, Xu Z-S, Que F, Liu J-X, Wang F, Xiong A-S (2018) An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica. Planta 247(2):301–315PubMedCrossRefGoogle Scholar
  10. Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827PubMedCrossRefGoogle Scholar
  11. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644PubMedPubMedCentralCrossRefGoogle Scholar
  12. Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780PubMedCrossRefGoogle Scholar
  13. Guo F, Yu H, Xu Q, Deng X (2015) Transcriptomic analysis of differentially expressed genes in an orange-pericarp mutant and wild type in pummelo (Citrus grandis). BMC Plant Biol 15(1):44PubMedPubMedCentralCrossRefGoogle Scholar
  14. Harborne JB, Williams CA (2001) Anthocyanins and other flavonoids (January 1998 to December 2000). Nat Prod Rep 18(3):310–333PubMedCrossRefGoogle Scholar
  15. He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Ann Rev Food Sci Technol 1(1):163CrossRefGoogle Scholar
  16. Hua W, Zhang Y, Song J, Zhao L, Wang Z (2011) De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98(4):272–279CrossRefGoogle Scholar
  17. Jaakola L, Seymour GB (2010) A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol 153(4):1619–1629PubMedPubMedCentralCrossRefGoogle Scholar
  18. Jin S-W, Rahim MA, Kim H-T, Park J-I, Kang J-G, Nou I-S (2017) Molecular analysis of anthocyanin-related genes in ornamental cabbage. Genome 61(2):111–120PubMedCrossRefGoogle Scholar
  19. Jin S-W, Rahim MA, Afrin KS, Park J-I, Kang J-G, Nou I-S (2018) Transcriptome profiling of two contrasting ornamental cabbage (Brassica oleracea var. acephala) lines provides insights into purple and white inner leaf pigmentation. BMC Genom 19(1):797CrossRefGoogle Scholar
  20. Kishimoto S, Sumitomo K, Yagi M, Nakayama M, Ohmiya A (2007) Three routes to orange petal color via carotenoid components in 9 compositae species. J Jpn Soc Hortic Sci 76(76):250–257CrossRefGoogle Scholar
  21. Lalusin AG, Nishita K, Kim SH, Ohta M, Fujimura T (2006) A new MADS-box gene (IbMADS10) from sweet potato (Ipomoea batatas (L.) Lam) is involved in the accumulation of anthocyanin. Mol Genet Genom Mgg 275(1):44–54CrossRefGoogle Scholar
  22. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12(1):323CrossRefGoogle Scholar
  23. Li X, Sun H, Pei J, Dong Y, Wang F, Chen H, Sun Y, Wang N, Li H, Li Y (2012) De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants. Gene 511(1):54–61PubMedCrossRefGoogle Scholar
  24. Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J, Mysore KS, Zhao J (2016) Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytol 210(3):905PubMedCrossRefGoogle Scholar
  25. Lim SH, Kim DH, Kim JK, Lee JY, Ha SH (2017) A radish basic helix-loop-helix transcription factor, RsTT8 acts a positive regulator for anthocyanin biosynthesis. Front Plant Sci 8:1917PubMedPubMedCentralCrossRefGoogle Scholar
  26. Liu D, Galli M, Crawford NM (2001) Engineering variegated floral patterns in tobacco plants using the Arabidopsis transposable element Tag1. Plant Cell Physiol 42(4):419–423PubMedCrossRefGoogle Scholar
  27. Liu Y, Linwang K, Deng C, Warran B, Wang L, Yu B, Yang H, Wang J, Espley RV, Zhang J (2015) Comparative transcriptome analysis of white and purple potato to identify genes involved in anthocyanin biosynthesis. PLoS ONE 10(6):e0129148PubMedPubMedCentralCrossRefGoogle Scholar
  28. Liu Y, Wang L, Zhang J, Yu B, Wang J, Wang D (2017) The MYB transcription factor StMYBA1 from potato requires light to activate anthocyanin biosynthesis in transgenic tobacco. J Plant Biol 60(1):93–101CrossRefGoogle Scholar
  29. Liu C, Chi C, Jin L, Zhu J, Yu J, Zhou Y (2018) The bZip transscription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. Plant Cell Environ 41(8):1762–1775PubMedCrossRefGoogle Scholar
  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time puantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408PubMedPubMedCentralCrossRefGoogle Scholar
  31. Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A, Cantero A, Gonzalez A (2017) Advances in the MYB-bHLH-WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant Cell Physiol 58(9):1431–1441PubMedPubMedCentralCrossRefGoogle Scholar
  32. Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179(4):1004–1016PubMedCrossRefGoogle Scholar
  33. Lou Q, Liu Y, Qi Y, Jiao S, Tian F, Jiang L, Wang Y (2014) Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. J Exp Bot 65(12):3157–3164PubMedPubMedCentralCrossRefGoogle Scholar
  34. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35(suppl_2): W182–W185PubMedPubMedCentralCrossRefGoogle Scholar
  35. Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628PubMedCrossRefGoogle Scholar
  36. Oh JH, Lee YJ, Byeon EJ, Kang BC, Kyeoung DS, Kim CK (2018) Whole-genome resequencing and transcriptomic analysis of genes regulating anthocyanin biosynthesis in black rice plants. Biotechnology 8(2):115Google Scholar
  37. Outchkourov N, Karlova R, Hoelscher M, Schrama X, Blilou I, Jongedijk E, Diez SC, Adj VD, Bosch D, Hall R (2018) Transcription factor mediated control of anthocyanin biosynthesis in vegetative tissues. Plant Physiol 176(2):1862–1878PubMedCrossRefGoogle Scholar
  38. Qiu Z, Wang X, Gao J, Guo Y, Huang Z, Du Y (2016) The tomato Hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. PLoS ONE 11(3):e0151067PubMedPubMedCentralCrossRefGoogle Scholar
  39. Rapisarda P, Fanella F, Maccarone E (2000) Reliability of analytical methods for determining anthocyanins in blood orange juices. J Agric Food Chem 48(6):2249–2252PubMedCrossRefPubMedCentralGoogle Scholar
  40. Salemme M, Sica M, Gaudio L, Aceto S (2011) Expression pattern of two paralogs of the PI/GLO-like locus during Orchis italica (Orchidaceae, Orchidinae) flower development. Dev Genes Evol 221(4):241PubMedCrossRefGoogle Scholar
  41. Shi SG, Yang M, Zhang M, Wang P, Kang YX, Liu JJ (2014) Genome-wide transcriptome analysis of genes involved in flavonoid biosynthesis between red and white strains of Magnolia sprengeri pamp. BMC Genom 15(1):706CrossRefGoogle Scholar
  42. Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54(4):733–749PubMedCrossRefGoogle Scholar
  43. Tsuda T (2012) Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res 56(1):159–170PubMedCrossRefGoogle Scholar
  44. Wang L, Albert NW, Zhang H, Arathoon S, Boase MR, Ngo H, Schwinn KE, Davies KM, Lewis DH (2014) Temporal and spatial regulation of anthocyanin biosynthesis provide diverse flower colour intensities and patterning in Cymbidium orchid. Planta 240(5):983–1002PubMedCrossRefGoogle Scholar
  45. Wei H, Chen X, Zong X, Shu H, Gao D, Liu Q (2015) Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.). PLoS ONE 10(3):e0121164PubMedPubMedCentralCrossRefGoogle Scholar
  46. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126(2):485–493PubMedPubMedCentralCrossRefGoogle Scholar
  47. Wu ZG, Jiang W, Mantri N, Bao XQ, Chen SL, Tao ZM (2015) Transciptome analysis reveals flavonoid biosynthesis regulation and simple sequence repeats in yam (Dioscorea alata L.) tubers. BMC Genom 16(1):1–12CrossRefGoogle Scholar
  48. Xu L, Yang P, Feng Y, Xu H, Cao Y, Tang Y, Yuan S, Liu X, Ming J (2017) Spatiotemporal transcriptome analysis provides insights into bicolor tepal development in Lilium “tiny Padhye”. Front Plant Sci 8:398PubMedPubMedCentralGoogle Scholar
  49. Yang Y, Wang J, Ma Z, Sun G, Zhang C (2014) De novo sequencing and comparative transcriptome analysis of white petals and red labella in Phalaenopsis for discovery of genes related to flower color and floral differentation. Acta Soc Bot Pol 83(3):191–199CrossRefGoogle Scholar
  50. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):1–12CrossRefGoogle Scholar
  51. Yuan XY, Jiang SH, Wang MF, Ma J, Zhang XY, Cui B (2014) Evaluation of internal control for gene expression in Phalaenopsis by quantitative real-time PCR. Appl Biochem Biotechnol 173(6):1431–1445PubMedCrossRefGoogle Scholar
  52. Zhang Y, Chen G, Dong T, Pan Y, Zhao Z, Tian S, Hu Z (2014) Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple bok choy (Brassica rapa var. chinensis). J Agric Food Chem 62(51):12366PubMedCrossRefGoogle Scholar
  53. Zhang Y, Hu Z, Zhu M, Zhu Z, Wang Z, Tian S, Chen G (2015) Anthocyanin accumulation and molecular analysis of correlated genes in purple kohlrabi (Brassica oleracea var. gongylodes L.). J Agric Food Chem 63(16):4160–4169PubMedCrossRefGoogle Scholar
  54. Zhao ZC, Hu GB, Hu FC, Wang HC, Yang ZY, Lai B (2012) The UDP glucose: flavonoid-3-O-glucosyltransferase (UFGT) gene regulates anthocyanin biosynthesis in litchi (Litchi chinesis Sonn.) during fruit coloration. Mol Biol Rep 39(6):6409–6415.  https://doi.org/10.1007/s11033-011-1303-3 CrossRefPubMedGoogle Scholar
  55. Zhu M, Hu Z, Zhou S, Wang L, Dong T, Pan Y, Chen G (2014) Molecular characterization of six tissue-specific or stress-inducible genes of NAC transcription factor family in tomato (Solanum lycopersicum). J Plant Growth Regul 33(4):730–744CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoqing Meng
    • 1
    • 2
  • Ge Li
    • 1
    • 2
  • Lingya Gu
    • 1
  • Yu Sun
    • 1
  • Zongyun Li
    • 1
    • 2
  • Jingran Liu
    • 1
    • 2
  • Xiaoqing Wu
    • 3
  • Tingting Dong
    • 1
    • 2
    Email author
  • Mingku Zhu
    • 1
    • 2
    Email author
  1. 1.School of Life SciencesJiangsu Normal UniversityXuzhouChina
  2. 2.Jiangsu Key Laboratory of Phylogenomics & Comparative GenomicsJiangsu Normal UniversityXuzhouChina
  3. 3.Jiangsu Vocational Institute of Architectural TechnologyXuzhouChina

Personalised recommendations