Advertisement

Journal of Plant Growth Regulation

, Volume 38, Issue 2, pp 513–522 | Cite as

Cloning and Expression Analysis of SiCDPK4, a Gene Related to Heterosis in Foxtail Millet [(Setaria italica (L.) P. Beauv.)]

  • Dan Liu
  • Suying Li
  • Lina Wang
  • Qiang Li
  • Yanjiao Cui
  • Xiaodong Dai
  • Zilong Zhao
  • Chao ChenEmail author
  • Junxia LiEmail author
  • Zhengli LiuEmail author
Article
  • 91 Downloads

Abstract

Heterosis, which refers to the superior performance of an F1 hybrid compared to its parents, has been widely used in crop production to increase grain yield. However, the mechanism responsible for heterosis still remains to be explored. Here, we report involvement of Setaria italica Calcium-Dependent Protein Kinase 4 (SiCDPK4) in yield-related heterosis of foxtail millet (Setaria italica (L.) P. Beauv.). Transient expression of SiCDPK4-GFP in foxtail millet protoplasts located SiCDPK4 to the plasma membrane. Analysis of its spatial and temporal expression pattern revealed that SiCDPK4 expressed mainly in leaves, but also in roots and spikes. At the filling stage, significantly higher levels of the SiCDPK4 transcript were observed in the leaves and spikes of hybrids with strong yield heterosis than those with medium and weak heterosis, suggesting that SiCDPK4 is most likely related to yield heterosis in foxtail millet.

Keywords

Foxtail millet Heterosis Calcium-dependent protein kinase Gene cloning Gene expression analysis 

Notes

Acknowledgements

Sequence data from this article can be found in NCBI/Ensemble plants database under the following accession numbers: ZmCPK16 (NM_001359579), NtCPK4 (AAL30819.1), OsCDPK1 (A2ZV17.1), OsCDPK2 (Q5VQQ5.1), OsCDPK3 (Q8LPZ7.1), OsCDPK4 (Q6Z2M9.1), OsCDPK5 (Q0DYK7.1), OsCDPK6 (Q6K968.1), OsCDPK7 (P53684.2), OsCDPK8 (Q75GE8.1), OsCDPK9 (Q6AVI8.1), OsCDPK10 (Q6F3A6.1), OsCDPK11 (Q852N6.1), OsCDPK12 (Q7XSQ5.2), OsCDPK13 (Q9FXQ3.1), OsCDPK14 (B9FKW9.1), OsCDPK15 (Q6I587.1), OsCDPK16 (Q6I5I8.1), OsCDPK17 (Q7XM0.1), OsCDPK18 (Q0D715.1), OsCDPK19 (P53683.2), OsCDPK20 (Q84SL0.2), OsCDPK21 (Q6ZIU9.1), OsCDPK22 (Q69IM9.1), OsCDPK23 (P53682.2), OsCDPK24 (Q53P85.1), OsCDPK25 (Q2RAV0.1), OsCDPK26 (Q2QY37.1), OsCDPK27 (Q2QQR2.1), OsCDPK28 (Q2QX45.1), OsCDPK29 (Q2QVG8.1), AtCDPK1 (Q06850.1), AtCDPK2 (Q38870.1), AtCDPK3 (Q42479.1), AtCDPK4 (Q38869.1), AtCDPK5 (Q38871.1), AtCDPK6 (Q38872.1), AtCDPK7 (Q38873.1), AtCDPK8 (Q42438.1), AtCDPK9 (Q38868.1), AtCDPK10 (Q9M9V8.1), AtCDPK11 (Q39016.2), AtCDPK12 (Q42396.1), AtCDPK13 (Q8W4I7.2), AtCDPK14 (P93759.1), AtCDPK15 (O49717.1), AtCDPK16 (Q7XJR9.1), AtCDPK17 (Q9FMP5.1), AtCDPK18 (Q1PE17.1), AtCDPK19 (Q1PFH8.1), AtCDPK20 (Q9ZV15.1), AtCDPK21 (Q9ZSA2.1), AtCDPK22 (Q9ZSA3.2), AtCDPK23 (Q9M101.1), AtCDPK24 (Q9SIQ7.1), AtCDPK25 (Q9SJ61.1), AtCDPK26 (AEE86901.1), AtCDPK27 (Q9ZSA4.3), AtCDPK28 (Q9FKW4.1), AtCDPK29 (Q8RWL2.2), AtCDPK30 (Q9SSF8.1), AtCDPK31 (Q9S9V0.2), AtCDPK32 (Q6NLQ6.1), AtCDPK33 (Q9C6P3.1), AtCDPK34 (Q3E9C0.1), SiACTIN (KQL08744) and SiCDPKs (KQL02746, KQL05940, KQL07402, KQL07578, KQL13693, KQL14095, KQL14917, KQL15106, KQL16903, KQL22510, KQL23326, KQL25296, KQL25992, KQL26299, KQL28913, KQL30978, KQL32268, KQK86528, KQK86759, KQK86762, KQK92778, KQK92779, KQK93782, KQK93793, KQK97667, KQK98445, KQK98623, KQK99515). This work was supported by National Natural Science Foundation of China (Grant No. 31471563).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

344_2018_9866_MOESM1_ESM.doc (84 kb)
Supplementary material 1 (DOC 83 KB)

References

  1. Asano T, Tanaka N, Yang G et al (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46:356–366.  https://doi.org/10.1093/pcp/pci035 CrossRefGoogle Scholar
  2. Asano T, Hayashi N, Kikuchi S et al (2012a) CDPK-mediated abiotic stress signaling. Plant Signal Behav 7:817–821.  https://doi.org/10.4161/psb.20351 CrossRefGoogle Scholar
  3. Asano T, Hayashi N, Kobayashi M et al (2012b) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36.  https://doi.org/10.1111/j.1365-313X.2011.04766.x CrossRefGoogle Scholar
  4. Baranwal VK, Mikkilineni V, Zehr UB et al (2012) Heterosis: emerging ideas about hybrid vigour. J Exp Bot 63:6309–6314.  https://doi.org/10.1093/jxb/errs321931 CrossRefGoogle Scholar
  5. Billker O, Lourido S, Sibley LD (2009) Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host Microbe 5:612–622.  https://doi.org/10.1016/j.chom.2009.05.017 CrossRefGoogle Scholar
  6. Birchler JA, Auger DL, Riddle NC (2003) In search of the molecular basis of heterosis. Plant Cell 15:2236–2239.  https://doi.org/10.1105/tpc.151030 CrossRefGoogle Scholar
  7. Birchler JA, Yao H, Chudalayandi S (2006) Unraveling the genetic basis of hybrid vigor. Proc Natl Acad Sci USA 103:12957–12958.  https://doi.org/10.1073/pnas.0605627103 CrossRefGoogle Scholar
  8. Blum A (2013) Heterosis, stress, and the environment: a possible road map towards the general improvement of crop yield. J Exp Bot 64:4829–4837.  https://doi.org/10.1093/jxb/ert289 CrossRefGoogle Scholar
  9. Bologna G, Yvon C, Duvaud S et al (2004) N-terminal myristoylation predictions by ensembles of neural networks. Proteomics 4:1626–1632.  https://doi.org/10.1002/pmic.200300783 CrossRefGoogle Scholar
  10. Bomblies K, Weigel D (2007) Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat Rev Genet 8:382–393.  https://doi.org/10.1038/nrg2082 CrossRefGoogle Scholar
  11. Bundo M, Coca M (2016) Enhancing blast disease resistance by overexpression of the calcium-dependent protein kinase OsCPK4 in rice. Plant Biotechnol J 14:1357–1367.  https://doi.org/10.1111/pbi.12500 CrossRefGoogle Scholar
  12. Bundo M, Coca M (2017) Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants. J Exp Bot 68:2963–2975.  https://doi.org/10.1093/jxb/erx145 CrossRefGoogle Scholar
  13. Campo S, Baldrich P, Messeguer J et al (2014) Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol 165:688–704.  https://doi.org/10.1104/pp.113.230268 CrossRefGoogle Scholar
  14. Cheng SH, Willmann MR, Chen HC et al (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485.  https://doi.org/10.1104/pp.005645 CrossRefGoogle Scholar
  15. Dammann C (2003) Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol 132:1840–1848.  https://doi.org/10.1104/pp.103.020008 CrossRefGoogle Scholar
  16. Finn R, Clements J, Arndt W et al (2015) HMMER web server: 2015 update. Nucleic Acids Res 43:W30–W38.  https://doi.org/10.1093/nar/gkv397 CrossRefGoogle Scholar
  17. Fu D, Xiao M, Hayward A et al (2015) What is crop heterosis: new insights into an old topic. J Appl Genet 56:1–13.  https://doi.org/10.1007/s13353-014-0231-z CrossRefGoogle Scholar
  18. Groszmann M, Gonzalez-Bayon R, Lyons RL et al (2015) Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids. Proc Natl Acad Sci USA 112:E6397–E6406.  https://doi.org/10.1073/pnas.1519926112 CrossRefGoogle Scholar
  19. Guo M, Rupe MA, Yang X et al (2006) Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet 113:831–845.  https://doi.org/10.1007/s00122-006-0335-x CrossRefGoogle Scholar
  20. Guo M, Rupe MA, Dieter JA et al (2010) Cell Number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell 22:1057–1073.  https://doi.org/10.1105/tpc.109.073676 CrossRefGoogle Scholar
  21. Harmon AC, Gribskov M, Gubrium E et al (2001) The CDPK superfamily of protein kinases. New Phytol 151:175–183.  https://doi.org/10.1046/j.1469-8137.2001.00171.x CrossRefGoogle Scholar
  22. Harper JF, Sussman MR, Schaller GE et al (1991) A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252:951.  https://doi.org/10.1126/science.1852075 CrossRefGoogle Scholar
  23. Harper JF, Breton G, Harmon A (2004) Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55:263–288.  https://doi.org/10.1146/annurev.arplant.55.031903.141627 CrossRefGoogle Scholar
  24. He G, Luo X, Tian F et al (2006) Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res 16:618–626.  https://doi.org/10.1101/gr.4814006 CrossRefGoogle Scholar
  25. Hochholdinger F, Hoecker N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12:427–432.  https://doi.org/10.1016/j.tplants.2007.08.005 CrossRefGoogle Scholar
  26. Hrabak EM, Chan CW, Gribskov M et al (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680.  https://doi.org/10.1104/pp.102.011999 CrossRefGoogle Scholar
  27. Huang Q, Wang H, Gao P et al (2008) Cloning and characterization of a calcium dependent protein kinase gene associated with cotton fiber development. Plant Cell Rep 27:1869.  https://doi.org/10.1007/s00299-008-0603-0 CrossRefGoogle Scholar
  28. Huang X, Huang M, Liu H et al (2018) Effects of annual precipitation and population density on tiller-earing and yield of Zhangzagu 5 under film mulching and hole sowing. Crops 4:106–113.  https://doi.org/10.16035/j.issn.1001-7283.2018.04.018 Google Scholar
  29. Jg Coors SP (1989) Heterosis: feeding people and protecting natural resources. Genet Exploit Heterosis Crops 1989:19–29Google Scholar
  30. Kersey PJ, Allen JE, Christensen M et al (2014) Ensembl Genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res 42:D546–D552.  https://doi.org/10.1093/nar/gkt979 CrossRefGoogle Scholar
  31. Kim K (1994) Cloning and characterization of calcium-dependent protein kinases from Paramecium tetraurelia. University of Wisconsin, MadisonGoogle Scholar
  32. Kobayashi M, Ohura I, Kawakita K et al (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080.  https://doi.org/10.1105/tpc.106.048884 CrossRefGoogle Scholar
  33. Kong X, Lv W, Jiang S et al (2013) Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genomics 14:433.  https://doi.org/10.1186/1471-2164-14-433 CrossRefGoogle Scholar
  34. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  35. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948.  https://doi.org/10.1093/bioinformatics/btm404 CrossRefGoogle Scholar
  36. Lee J, Rudd JJ (2002) Calcium-dependent protein kinases: versatile plant signalling components necessary for pathogen defence. Trends Plant Sci 7:97–98.  https://doi.org/10.1016/S1360-1385(02)02229-X CrossRefGoogle Scholar
  37. Li A, Wang X, Leseberg CH et al (2008a) Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.). Plant Signal Behav 3:654–656.  https://doi.org/10.1007/s11103-007-9281-5 CrossRefGoogle Scholar
  38. Li A, Zhu Y, Tan X et al (2008b) Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Mol Biol 66:429–443.  https://doi.org/10.1007/s11103-007-9281-5 CrossRefGoogle Scholar
  39. Li B, Liu D, Li Q et al (2016) Overexpression of wheat gene TaMOR improves root system architecture and grain yield in Oryza sativa. J Exp Bot 67:4155–4167.  https://doi.org/10.1093/jxb/erw193 CrossRefGoogle Scholar
  40. Li S, Liu D, Li Q et al (2018) Breeding of advantage heterosis foxtail millet hybrid Jizagu5 with characteristic of herbicide-resistant and the research of simplified cultivation technique in seedlings. J Tangshan Normal Univ 40:54–58.  https://doi.org/10.3969/j.issn.1009-9115.2018.03.014 Google Scholar
  41. Liu Z, Bai G, Zhang D et al (2014) Heterotic classes and utilization patterns in Chinese Foxtail Millet [Setaria italica (L.) P. Beauv]. Agric Sci 05:1392–1406.  https://doi.org/10.4236/as.2014.514150 Google Scholar
  42. Lu SX, Hrabak EM (2002) An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol 128:1008–1021.  https://doi.org/10.1104/pp.010770 CrossRefGoogle Scholar
  43. Ludwig AA, Romeis T, Jones JD (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181–188.  https://doi.org/10.1093/jxb/erh008 CrossRefGoogle Scholar
  44. Ma P, Liu J, Yang X et al (2013) Genome-wide identification of the maize calcium-dependent protein kinase gene family. Appl Biochem Biotechnol 169:2111–2125.  https://doi.org/10.1007/s12010-013-0125-2 CrossRefGoogle Scholar
  45. Martin ML, Busconi L (2000) Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J 24:429–435.  https://doi.org/10.1046/j.1365-313x.2000.00889.x CrossRefGoogle Scholar
  46. Matschi S, Werner S, Schulze WX et al (2013) Function of calcium-dependent protein kinase CPK28 of Arabidopsis thaliana in plant stem elongation and vascular development. Plant J 73:883–896.  https://doi.org/10.1111/tpj.12090 CrossRefGoogle Scholar
  47. McCurdy DW, Harmon AC (1992) Calcium-dependent protein kinase in the green alga Chara. Planta 188:54–61.  https://doi.org/10.1007/BF01160712 CrossRefGoogle Scholar
  48. Morello L (2000) Overexpression of the calcium-dependent protein kinase OsCDPK2 in transgenic rice is repressed by light in leaves and disrupts seed development. Transgenic Res 9:453–462.  https://doi.org/10.1023/a:1026555021606 CrossRefGoogle Scholar
  49. Myers C, Romanowsky SM, Barron YD et al (2009) Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. Plant J 59:528–539.  https://doi.org/10.1111/j.1365-313X.2009.03894.x CrossRefGoogle Scholar
  50. Nie H (2015) Cloning and functional analysis of genes related to maize heterosis. Jilin University, ChangchunGoogle Scholar
  51. Putnam-Evans CL, Harmon AC, Cormier MJ (1990) Purification and characterization of a novel calcium-dependent protein kinase from soybean. Biochemistry 29:2488–2495.  https://doi.org/10.1021/bi00462a008 CrossRefGoogle Scholar
  52. Ray S, Agarwal P, Arora R et al (2007) Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics 278:493–505.  https://doi.org/10.1007/s00438-007-0267-4 CrossRefGoogle Scholar
  53. Ren J, Wen L-P, Gao X et al (2008) CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21:639–644.  https://doi.org/10.1093/protein/gzn039 CrossRefGoogle Scholar
  54. Roberts DM, Harmon AC (1992) Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol 43:375–414.  https://doi.org/10.1146/annurev.pp.43.060192.002111 CrossRefGoogle Scholar
  55. Rutschmann F, Stalder U, Piotrowski M et al (2002) LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant Physiol 129:156–168.  https://doi.org/10.1104/pp.000869 CrossRefGoogle Scholar
  56. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108.  https://doi.org/10.1038/nprot.2008.73 CrossRefGoogle Scholar
  57. Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88.  https://doi.org/10.1146/annurev-arplant-042110-103827 CrossRefGoogle Scholar
  58. Schultz J, Copley R, Doerks R T et al (2000) A web-based tool for the study of enetically mobile domains. Nucleic Acids Res 28:231–234.  https://doi.org/10.1093/nar/28.1.231 CrossRefGoogle Scholar
  59. Shull GH (1948) What is “heterosis”? Genetics 33:439.  https://doi.org/10.1093/nar/25.24.4876 Google Scholar
  60. Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275.  https://doi.org/10.1101/gr.5347007 CrossRefGoogle Scholar
  61. Sugiyama K-i, Mori IC, Takahashi K et al (2000) A calcium-dependent protein kinase functions in wound healing in Ventricaria ventricosa (Chlorophyta). J Phycol 36:1145–1152.  https://doi.org/10.1046/j.1529-8817.2000.00050.x CrossRefGoogle Scholar
  62. Tollenaar M, Lee EA (2002) Yield potential, yield stability and stress tolerance in maize. Field Crops Res 75:161–169.  https://doi.org/10.1016/S0378-4290(02)00024-2 CrossRefGoogle Scholar
  63. Tollenaar M, Lee EA (2006) Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica 51:399–408Google Scholar
  64. Tollenaar M, Wu J (1999) Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci 39:1597.  https://doi.org/10.2135/cropsci1999.3961597x CrossRefGoogle Scholar
  65. Tollenaar M, Ahmadzadeh A, Lee EA (2004) Physiological basis of heterosis for grain yield in maize. Crop Sci 44:2086–2094.  https://doi.org/10.2135/cropsci2004.2086 CrossRefGoogle Scholar
  66. Wang J, Wang S, Hu K et al (2018) The kinase OsCPK4 regulates a buffering mechanism that fine-tunes innate immunity. Plant Physiol 176:1835–1849.  https://doi.org/10.1104/pp.17.01024 CrossRefGoogle Scholar
  67. Wheeler DL, Barrett T, Benson DA et al (2007) Database resources of the national center for biotechnology information. Nucleic Acids Res 35:D5–D12.  https://doi.org/10.1093/nar/gkl1031 CrossRefGoogle Scholar
  68. Yadav OP, Weltzien-Rattunde E, Bidinger FR et al (2000) Heterosis in landrace-based topcross hybrids of pearl millet across arid environments. Euphytica 112:285–295.  https://doi.org/10.1023/A:1003965025727 CrossRefGoogle Scholar
  69. Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572.  https://doi.org/10.1038/nprot.2007.199 CrossRefGoogle Scholar
  70. Zhang XS, Choi JH (2001) Molecular evolution of calmodulin-like domain protein kinases (CDPKs) in plants and protists. J Mol Evol 53:214–224.  https://doi.org/10.1007/s002390010211 CrossRefGoogle Scholar
  71. Zhao Y, Kappes B, Franklin RM (1993) Gene structure and expression of an unusual protein kinase from plasmodium falciparum homologous at its carboxyl terminus with the EF hand calcium-bingding proteins. J Biol Chem 268:4347–4354Google Scholar
  72. Zhao L, Shen L, Zhang W et al (2013) Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K + channels in Arabidopsis pollen tubes. Plant Cell 25:649–661.  https://doi.org/10.1105/tpc.112.103184 CrossRefGoogle Scholar
  73. Zou J, Wei F, Wang C et al (2010) Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154:1232–1243.  https://doi.org/10.1104/pp.110.157545 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Life SciencesTangshan Normal UniversityTangshanChina
  2. 2.Tianjin Crop Research InstituteTianjin Academy of Agricultural SciencesTianjinChina
  3. 3.Institute of Grain CropsHenan Academy of Agriculture ScienceZhengzhouChina

Personalised recommendations