Advertisement

Removal of phenol by Isochrysis galbana in seawater under varying temperature and light intensity

  • Hao Li
  • Fanping MengEmail author
  • Yuejie Wang
  • Yufei Lin
Article
  • 8 Downloads

Abstract

Phenol is a common industrial chemical produced and transported worldwide largely. Therefore, accidental spillage of phenol in the ocean causes an increasing concern. Microalgae are promising to remove phenol from marine waters. However, temperature and light intensity are two main factors that markedly influence biodegradation in marine environments. In this study, a marine golden alga Isochrysis galbana is selected to research the removal of phenol under different temperatures (10–30°C) and light intensities (0–240 µmol/(m2·s)). The results show that the most suitable temperature and light intensity for phenol removal are 20°C and 180 µmol/(m2·s), respectively, and 100 mg/L of phenol can be completely removed by microalga in 24 h at these conditions. I. galbana can also remove phenol under dark and low-temperature conditions. The removal of phenol by I. galbana at diverse temperatures and light intensities conform to first-order kinetics, and the process under dark conditions conform to zero-order kinetics. Thus, I. galbana can be used in the in-situ bioremediation of polluted seawater by phenol.

Keyword

phenol Isochrysis galbana temperature light intensity biodegradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkhamis Y, Qin J G. 2013. Cultivation of Isochrysis galbana in phototrophic, heterotrophic, and mixotrophic conditions. BioMed. Res. Int., 2013: 983 465,  https://doi.org/10.1155/2013/983465.CrossRefGoogle Scholar
  2. Andersen G S, Pedersen M F, Nielsen S L. 2013. Temperature acclimation and heat tolerance of photosynthesis in Norwegian Saccharina latissima (Laminariales, Phaeophyceae). J. Phycol., 49(4): 689–700.CrossRefGoogle Scholar
  3. Bradley P M, Writer J H. 2014. Effect of light on biodegradation of estrone, 17β-estradiol, and 17α-ethinylestradiol in stream sediment. J. Am. Water Resour. Assoc., 50(2): 334–342.CrossRefGoogle Scholar
  4. Calabrese E J, Kenyon E M. 1991. Air Toxics and Risk Assessment. Lewis Publishers, Chelsea.Google Scholar
  5. Caracciolo A B, Topp E, Grenni P. 2015. Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J. Pharm. Biomed. Anal., 106: 25–36.CrossRefGoogle Scholar
  6. Cunha I, Moreira S, Santos M M. 2015. Review on hazardous and noxious substances (HNS) involved in marine spill incidents—An online database. J. Hazard. Mater., 285: 509–516.CrossRefGoogle Scholar
  7. Di Caprio F, Scarponi P, Altimari P, Iaquaniello G, Pagnanelli F. 2018. The influence of phenols extracted from olive mill wastewater on the heterotrophic and mixotrophic growth of Scenedesmus sp. J. Chem. Technol. Biotechnol., 93(12): 3 619–3 626.CrossRefGoogle Scholar
  8. Du W, Zhao F Q, Zeng B Z. 2009. Novel multiwalled carbon nanotubes-polyaniline composite film coated platinum wire for headspace solid-phase microextraction and gas chromatographic determination of phenolic compounds. J. Chromatogr. A., 1216(18): 3 751–3 757.CrossRefGoogle Scholar
  9. Duan W Y, Meng F P, Cui H W, Lin Y F, Wang G S, Wu J Y. 2018. Ecotoxicity of phenol and cresols to aquatic organisms: a review. Ecotoxicol. Environ. Saf., 157: 441–456.CrossRefGoogle Scholar
  10. Duan W Y, Meng F P, Lin Y F, Wang G S. 2017. Toxicological effects of phenol on four marine microalgae. Environ. Toxicol. Pharmacol., 52: 170–176.CrossRefGoogle Scholar
  11. Emerson E. 1943. The condensation of aminoantipyrine. II. A new color test for phenolic compounds. J. Org. Chem., 8(5): 417–428.CrossRefGoogle Scholar
  12. French McCay D P, Whittier N, Ward M, Santos C. 2006. Spill hazard evaluation for chemicals shipped in bulk using modeling. Environ. Modell. Softw., 21(2): 156–169.CrossRefGoogle Scholar
  13. Gao J, Chi J. 2015. Biodegradation of phthalate acid esters by different marine microalgal species. Mar. Pollut. Bull., 99(1–2): 70–75.CrossRefGoogle Scholar
  14. Gao Q T, Wong Y S, Tam N F Y. 2011. Removal and biodegradation of nonylphenol by different Chlorella species. Mar. Pollut. Bull., 63(5–12): 445–451.CrossRefGoogle Scholar
  15. Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W L, Chanley M H eds. Culture of Marine Invertebrate Animals. Springer, Boston. p.29–60.CrossRefGoogle Scholar
  16. HELCOM. 2002. Response to Accidents at Sea Involving Spills of Hazardous Substances and Loss of Packaged Dangerous Goods. Baltic Marine Environment Protection Commission, Helsinki, Finland.Google Scholar
  17. Lima S A C, Raposo M F J, Castro P M L, Morais R M. 2004. Biodegradation of p-chlorophenol by a microalgae consortium. Water Res., 38(1): 97–102.CrossRefGoogle Scholar
  18. Liu M J, Fu Q, Fu H L, Shu G, Zhang W, Deng F Y, Hu J. 2014. A new kinetic approach. Stability of cefquinome sulfate under variable pH and temperature. Indian J. Pharm. Educ. Res., 48(S1): 27–33.CrossRefGoogle Scholar
  19. Lu Y, Yan L H, Wang Y, Zhou S F, Fu J J, Zhang J F. 2009. Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium. J. Hazard. Mater., 165(1–3): 1 091–1 097.CrossRefGoogle Scholar
  20. Matamoros V, Gutiérrez R, Ferrer I, García J, Bayona J M. 2015. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J. Hazard. Mater., 288: 34–42.CrossRefGoogle Scholar
  21. Massalha N, Shaviv A, Sabbah I. 2010. Modeling the effect of immobilization of microorganisms on the rate of biodegradation of phenol under inhibitory conditions. Water Res., 44(18): 5 252–5 259.CrossRefGoogle Scholar
  22. Nazos T T, Kokarakis E J, Ghanotakis D F. 2017. Metabolism of xenobiotics by Chlamydomonas reinhardtii: phenol degradation under conditions affecting photosynthesis. Photosynth. Res., 131(1): 31–40.CrossRefGoogle Scholar
  23. Onysko K A, Budman H M, Robinson C W. 2000. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnol. Bioeng., 70(3): 291–299.CrossRefGoogle Scholar
  24. Perez-Garcia O, Escalante F M E, De-Bashan L E, Bashan Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res., 45(1): 11–36.CrossRefGoogle Scholar
  25. Polymenakou P N, Stephanou E G. 2005. Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad. Biodegradation, 16(5): 403–413.CrossRefGoogle Scholar
  26. Raven J A, Geider R J. 1988. Temperature and algal growth. New Phytol., 110(4): 441–461.CrossRefGoogle Scholar
  27. Saravanan P, Pakshirajan K, Saha P. 2009. Batch growth kinetics of an indigenous mixed microbial culture utilizing m-cresol as the sole carbon source. J. Hazard. Mater., 162(1): 476–481.CrossRefGoogle Scholar
  28. Senthilvelan T, Kanagaraj J, Panda R C, Mandal A B. 2014. Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction. Clean. Technol. Environ. Policy, 16(1): 113–126.CrossRefGoogle Scholar
  29. Siddiqui K S. 2015. Some like it hot, some like it cold: temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol. Adv., 33(8): 1 912–1 922.CrossRefGoogle Scholar
  30. Silambarasan S, Abraham J. 2013. Kinetic studies on enhancement of degradation of chlorpyrifos and its hydrolyzing metabolite TCP by a newly isolated Alcaligenes sp. JAS1. J. Taiwan Inst. Chem. Eng., 44(3): 438–445.CrossRefGoogle Scholar
  31. Sinkkonen S, Paasivirta J. 2000. Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere, 40(9–11): 943–949.CrossRefGoogle Scholar
  32. Song C F, Wei Y L, Qiu Y T, Qi Y, Li Y, Kitamura Y. 2019. Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: experimental study. Bioresour. Technol., 272: 529–534.Google Scholar
  33. Surkatti R, El-Naas M H. 2018. Competitive interference during the biodegradation of cresols. Int. J. Environ. Sci. Technol., 15(2): 301–308.CrossRefGoogle Scholar
  34. Thakurta S G, Aakula M, Chakrabarty J, Dutta S. 2018. Bioremediation of phenol from synthetic and real wastewater using Leptolyngbya sp.: a comparison and assessment of lipid production. 3 Biotech, 8(4): 206.CrossRefGoogle Scholar
  35. Wan S G, Li G Y, An T C, Guo B, Sun L, Zu L, Ren A L. 2010. Biodegradation of ethanethiol in aqueous medium by a new Lysinibacillus sphaericus strain RG-1 isolated from activated sludge. Biodegradation, 21(6): 1 057–1 066.CrossRefGoogle Scholar
  36. Wang T, Xu Z Y, Wu L G, Li B R, Chen M X, Xue S Y, Zhu Y C, Cai J. 2017b. Enhanced photocatalytic activity for degrading phenol in seawater by TiO2-based catalysts under weak light irradiation. RSC Adv., 7(51): 31 921–31 929.CrossRefGoogle Scholar
  37. Wang X Q, Wang Q L, Li S J, Li W. 2015. Degradation pathway and kinetic analysis for p-xylene removal by a novel Pandoraea sp. strain WL1 and its application in a biotrickling filter. J. Hazard. Mater., 288: 17–24.CrossRefGoogle Scholar
  38. Wang Y J, Meng F P, Li H, Zhao S L, Liu Q Q, Lin Y F, Wang G S, Wu J Y. 2019. Biodegradation of phenol by Isochrysis galbana screened from eight species of marine microalgae: growth kinetic models, enzyme analysis and biodegradation pathway. J. Appl. Phycol., 31(1): 445–455.CrossRefGoogle Scholar
  39. Wang Y J, Meng F P, Lin Y F, Duan W Y, Liu Q Q. 2017a. Four types of attenuation of phenol and cresols in microcosms under simulated marine conditions: a kinetic study. Chemosphere, 185: 595–601.CrossRefGoogle Scholar
  40. Wernberg T, Thomsen M S, Tuya F, Kendrick G A, Staehr P A, Toohey B D. 2010. Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol. Lett., 13(6): 685–694.CrossRefGoogle Scholar
  41. Wijffels R H, Kruse O, Hellingwerf K J. 2013. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotech., 24(3): 405–413.CrossRefGoogle Scholar
  42. Xiong J Q, Kurade M B, Jeon B H. 2017. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J., 313: 1 251–1 257.CrossRefGoogle Scholar
  43. Yang S, Wu R S S, Kong R Y C. 2002. Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenol. Aquat. Toxicol., 59(3–4): 191–200.CrossRefGoogle Scholar
  44. Zhou D D, Xu Z X, Dong S S, Huo M X, Dong S S, Tian X D, Cui B, Xiong H F, Li T T, Ma D M. 2015. Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: visible light vs UV light. Environ. Sci. Technol., 49(13): 7 776–7 783.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Marine Environment and EcologyMinistry of EducationQingdaoChina
  2. 2.College of Environmental Science and EngineeringOcean University of ChinaQingdaoChina
  3. 3.National Marine Hazard Mitigation ServiceMinistry of Natural Resources of the People’s Republic of ChinaBeijingChina

Personalised recommendations