Advertisement

PI3K/Akt pathway is involved in the activation of RAW 264.7 cells induced by hydroxypropyltrimethyl ammonium chloride chitosan

  • Yue Yang
  • Rong’e XingEmail author
  • Song Liu
  • Yukun Qin
  • Kecheng Li
  • Huahua Yu
  • Pengcheng LiEmail author
Article
  • 1 Downloads

Abstract

We previously demonstrated that 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) promoted the production of nitric oxide (NO) and proinflammatory cytokines by activating the mitogen-activated protein kinases (MAPK) and Janus kinase (JAK)/STAT pathways in RAW 264.7 cells, indicating good immunomodulatory activity of HACC. In this study, to further investigate the immunomodulatory mechanisms of HACC, we determined the roles of phosphatidylinositol 3-kinase (PI3K)/Akt, activating protein (AP-1) and nuclear factor kappa B (NF-κB) in HACC-induced activation of RAW 264.7 cells by the western blotting. The results suggest that HACC promoted the phosphorylation of p85 and Akt. Furthermore, c-Jun and p65 were also increased after the treatment of RAW 264.7 cells with HACC, indicating the translocation of NF-κB and AP-1 from cytoplasm to nucleus. In addition, as scanning electron microscopy (SEM) analysis shows, the cell morphology changed after HACC treatment. These findings indicate that HACC activated MAPK, JAK/STAT, and PI3K/Akt signaling pathways dependent on AP-1 and NF-κB activation in RAW 264.7 cells, ultimately leading to the increase of NO and cytokines.

Keyword

hydroxypropyltrimethyl ammonium chloride chitosan RAW 264.7 cells PI3K/Akt pathway nuclear factor-κB activating protein 1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

We gratefully acknowledge Dr. Weicheng HU for proving cell culture room in Huaiyin Normal University (Jiangsu, China).

References

  1. Cantley L C. 2002. The phosphoinositide 3-kinase pathway. Science, 296 (5573): 1655–1657.CrossRefGoogle Scholar
  2. Chae H S, Kang O H, Lee Y S, Choi J G, Oh Y C, Jang H J, Kim M S, Kim J H, Jeong S I, Kwon D Y. 2009. Inhibition of LPS-induced iNOS, COX-2 and inflammatory mediator expression by paeonol through the MAPKs inactivation in RAW 264.7 cells. Am. J. Chinese Med., 37 (1): 181–194.CrossRefGoogle Scholar
  3. Cheever M L, Sato T K, de Beer T, Kutateladze T G, Emr S D, Overduin M. 2001. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biology3 (7): 613–618.CrossRefGoogle Scholar
  4. Chen J J, Huang W C, Chen C C. 2005. Transcriptional regulation of cyclooxygenase-2 in response to proteasome inhibitors involves reactive oxygen species-mediated signaling pathway and recruitment of CCAAT/enhancer-binding protein d and CREB-binding protein. Mol Biol Cell, 16 (12): 5579–5591.CrossRefGoogle Scholar
  5. Fang R H, Zhang L F. 2016. Nanoparticle-based modulation of the immune system. Annu Rev Chem Biomol Eng., 7 (1): 305–326.CrossRefGoogle Scholar
  6. Gugasyan R, Grumont R, Grossmann M, Nakamura Y, Pohl T, Nesic D, Gerondakis S. 2000. Rel/NF-κB transcription factors: key mediators of B-cell activation. Immunol Rev., 176 (1): 134–140.CrossRefGoogle Scholar
  7. Guha M, Mackman N. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling, 13 (2): 85–94.CrossRefGoogle Scholar
  8. Gukovsky I, Gukovskaya A S, Blinman T A, Zaninovic V, Pandol S J. 1998. Early NF-κB activation is associated with hormone-induced pancreatitis. Am J Physiol., 275 (6): G1402–G1414.Google Scholar
  9. Hartley J W, Evans L H, Green K Y, Naghashfar Z, Macias A R, Zerfas P M, Ward J M. 2008. Expression of infectious murine leukemia viruses by RAW264.7 cells, a potential complication for studies with a widely used mouse macrophage cell line. Retrovirology, 5: 1.CrossRefGoogle Scholar
  10. Hattori Y, Hattori S, Kasai K. 2003. Lipopolysaccharide activates Akt in vascular smooth muscle cells resulting in induction of inducible nitric oxide synthase through nuclear factor-kappa B activation. European Journal of Pharmacology, 481 (2-3): 153–158.CrossRefGoogle Scholar
  11. Johnson G L, Lapadat R. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298 (5600): 1911–1912.CrossRefGoogle Scholar
  12. Kao S J, Lei H C, Kuo C T, Chang M S, Chen B C, Chang Y C, Chiu W T, Lin C H. 2005. Lipoteichoic acid induces nuclear factor-kappaB activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology, 115 (3): 366–374.CrossRefGoogle Scholar
  13. Karin M, Liu Z G, Zandi E. 1997. AP-1 function and regulation. Curr. Opin. Cell Biol., 9 (2): 240–246.CrossRefGoogle Scholar
  14. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield M D. 2001. Cellular function of phosphoinositide 3-kinases: implications for development, immunity, homeostasis, and cancer. Annual Review of Cell and Developmental Biology, 17 (1): 615–675.CrossRefGoogle Scholar
  15. Koyasu S. 2003. The role of PI3K in immune cells. Nat Immunol., 4 (4): 313–319.CrossRefGoogle Scholar
  16. Kurita K. 2006. Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechno., 8 (3): 203–226.CrossRefGoogle Scholar
  17. Lee C G, Da Silva C A, Lee J Y, Hartl D, Elias J A. 2008. Chitin regulation of immune responses: an old molecule with new roles. Curr. Opin. Immunol., 20 (6): 684–689.CrossRefGoogle Scholar
  18. Li K K, Shen S S, Deng X Y, Shiu H T, Siu W S, Leung P C, Ko C H, Cheng B H. 2018. Dihydrofisetin exerts its anti-inflammatory effects associated with suppressing ERK/ p38 MAPK and Heme Oxygenase-1 activation in lipopolysaccharide-stimulated RAW 264.7 macrophages and carrageenan-induced mice paw edema. International Immunopharmacology, 54: 366–374.CrossRefGoogle Scholar
  19. Li L, Wang L Y, Wu Z Q, Yao L J, Wu Y H, Huang L, Liu K, Zhou X, Gou D M. 2014. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Sci Rep., 4: 6234.CrossRefGoogle Scholar
  20. Li Y, Qin Y K, Liu S, Li P C, Xing R E. 2016. Preparation, characterization, and antifungal activity of hymexazol-linked chitosan derivatives. Chinese Journal of Oceanology and Limnology, 35 (5): 1079–1085.CrossRefGoogle Scholar
  21. Liang N, Sang Y X, Liu W H, Yu W L, Wang X H. 2018. Anti-Inflammatory effects of gingerol on lipopolysaccharide-stimulated RAW 264.7 cells by inhibiting NF-κB signaling pathway. Inflammation, 41 (3): 835–845.CrossRefGoogle Scholar
  22. Liaqat F, Eltem R. 2018. Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr Polym., 184: 243–259.CrossRefGoogle Scholar
  23. Ma P, Liu H T, Wei P, Xu Q S, Bai X F, Du Y G, Yu C. 2011. Chitosan oligosaccharides inhibit LPS-induced over-expression of IL-6 and TNF-α in RAW264.7 macrophage cells through blockade of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. Carbohydr. Polym., 84 (4): 1391–1398.CrossRefGoogle Scholar
  24. Musti A M, Treier M, Bohmann D. 1997. Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP Kinases. Science, 275 (5298): 400–402.CrossRefGoogle Scholar
  25. Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I. 1984. Immunological activity of chitin and its derivatives. Vaccine, 2 (1): 93–99.CrossRefGoogle Scholar
  26. Nyati K K, Masuda K, Zaman M M U, Dubey P K, Millrine D, Chalise J P, Higa M, Li S L, Standley D M, Saito K, Hanieh H, Kishimoto T. 2017. TLR4-induced NF-κB and MAPK signaling regulate the IL-6 mRNA stabilizing protein Arid5a. Nucleic Acids Res., 45 (5): 2687–2703.CrossRefGoogle Scholar
  27. Pillai C K S, Paul W, Sharma C P. 2009. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Progress in Polymer Science, 34 (7): 641–678.CrossRefGoogle Scholar
  28. Poltorak A, He X L, Smirnova I, Liu M Y, van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282 (5396): 2085–2088.CrossRefGoogle Scholar
  29. Raschke W C, Baird S, Ralph P, Nakoinz I. 1978. Functional macrophage cell lines transformed by abelson leukemia virus. Cell, 15 (1): 261–267.CrossRefGoogle Scholar
  30. Schindler C, Levy D E, Decker T. 2007. JAK-STAT signaling: from interferons to cytokines. J Biol Chem., 282 (28): 20059–20063.CrossRefGoogle Scholar
  31. Shen T, Yang W S, Yi Y S, Sung G H, Rhee M H, Poo H, Kim M Y, Kim K W, Kim J H, Cho J Y. 2013. AP-1/IRF-3 targeted anti-Inflammatory activity of andrographolide isolated from Andrographis paniculata Evid Based Complement Alternat. Med., 2013 (4): 210 736.Google Scholar
  32. Sun H X, Zhang J, Chen F Y, Chen X F, Zhou Z H, Wang H. 2015. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr. Polym., 121: 388–402.CrossRefGoogle Scholar
  33. Tang B, Li X, Ren Y, Wang J, Xu D, Hang Y, Zhou T, Li F, Wang L. 2017. MicroRNA-29a regulates lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages through the Akt1/ NF-kappaB pathway. Exp. Cell Res., 360 (2): 74–80.CrossRefGoogle Scholar
  34. Wen Q, Mei L Y, Ye S, Liu X, Xu Q, Miao J F, Du S H, Chen D F, Li C, Li H. 2018. Chrysophanol demonstrates anti-inflammatory properties in LPS-primed RAW 264.7 macrophages through activating PPAR-ψ. International Immunopharmacology, 56: 90–97.CrossRefGoogle Scholar
  35. Wymann M P, Pirola L. 1998. Structure and function of phosphoinositide 3-kinases. BBA- Mol Cell Biol Lipids1436 (1-2): 127–150.CrossRefGoogle Scholar
  36. Yang Y, Xing R E, Liu S, Qin Y K, Li K C, Yu H H, Li P C. 2019. Hydroxypropyltrimethyl ammonium chloride chitosan activates RAW 264.7 macrophages through the MAPK and JAK-STAT signaling pathways. Carbohydr Polym., 205: 401–409.CrossRefGoogle Scholar
  37. Youn G S, Lee K W, Choi S Y, Park J. 2016. Overexpression of HDAC6 induces pro-inflammatory responses by regulating ROS-MAPK-NF-κB/AP-1 signaling pathways in macrophages. Free Radical Biology and Medicine97: 14–23.CrossRefGoogle Scholar
  38. Yu Y, Shen M Y, Wang Z J, Wang Y X, Xie M Y, Xie J H. 2017. Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydr. Polym., 174: 669–676.CrossRefGoogle Scholar
  39. Zhang Q, Wang L R, Chen B H, Zhuo Q, Bao C Y, Lin L. 2017. Propofol inhibits NF-κB activation to ameliorate airway inflammation in ovalbumin (OVA)-induced allergic asthma mice. International Immunopharmacology, 51: 158–164.CrossRefGoogle Scholar
  40. Zhang Y, Igwe O J. 2018. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage. Biochem. Pharmacol., 147: 104–118.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations