Advertisement

Magnetic properties indicate the sources of hadal sediments in the Yap Trench, northwest Pacific Ocean

  • Yu Chen
  • Jichao YangEmail author
  • Olusegun A. Dada
  • Yaomin Yang
  • Zhen Lin
  • Zhen Cui
  • Yue Xu
  • Hongjun Yu
  • Baohua Liu
Article
  • 5 Downloads

Abstract

Magnetic minerals in marine sediments are often masked by the primary natural remanent magnetization and material source signals. In order to understand sedimentary environment and sources of sediments in the abyss, we studied 126 samples of five bottom surface cores collected by the Jiaolong Submersible at 4000–7000 m in depth during the third stage of the China’s 38th Ocean Voyage. The magnetic properties of the sediments were analyzed using Thermosusceptibility (k-T) curves and Day plot. The results show that the magnetic minerals in the sediments of the Yap Trench are mainly maghemite, and the overall magnetic and soft magnetic properties were strong. The magnetic particles of sediments are dominated by pseudo single domains (PSD) grains. The main source of sediment is locally-derived basalt debris and volcanic debris, and the process of sedimentation is gravity-like flow deposition.

Keyword

magnetic property material resource hadal sediment Yap Trench 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The authors would like to thank Professor Wang Weiguo and Dr Liu Jianxing for providing insightful comments on this paper, and the anonymous reviewers for their constructive comments and helpful suggestions, which have improved the manuscript.

References

  1. Arai K, Naruse H, Miura R, Kawamura K, Hino R, Ito Y, Inazu D, Yokokawa M, Izumi N, Murayama M, Kasaya T. 2013. Tsunami-generated turbidity current of the 2011 Tohoku-Oki earthquake, Geology, 41(11): 1 195–1 198.CrossRefGoogle Scholar
  2. Borowski W S, Rodriguez N M, Paull C K, Ussler W. 2013. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?, Marine and Petroleum Geology, 43: 381–395.CrossRefGoogle Scholar
  3. Bridge J, Demicco R. 2011. Earth surface processes, landforms and sediment deposits, Earth Surface Processes & Landforms, 17(1): 92–94.Google Scholar
  4. Canfield D E, Olesen C A, Cox R P. 2006. Temperature and its control of isotope fractionation by a sulfate-reducing bacterium. Geochimica et Cosmochimica Acta, 70(3): 548–561.CrossRefGoogle Scholar
  5. Day R, Fuller M, Schmidt V A. 1977. Hysteresis properties of titanomagnetites: Grain–size and compositional dependence, Physics of the Earth and Planetary Interiors, 13(4): 260–267.CrossRefGoogle Scholar
  6. Dewangan P, Basavaiah N, Badesab F K, Usapkara A, Mazumdar A, Joshi R, Ramprasad T. 2013. Diagenesis of magnetic minerals in a gas hydrate/cold seep environment off the Krishna-Godavari basin, Bay of Bengal, Marine Geology, 340: 57–70.CrossRefGoogle Scholar
  7. Dong Y, Li J H, Zhang W C, Zhang W Y, Zhao Y, Xiao T, Wu L F, Pan H M. 2016. The detection of magnetotactic bacteria in deep sea sediments from the east Pacific Manganese Nodule Province, Environmental Microbiology Reports, 8(2): 239–249.CrossRefGoogle Scholar
  8. Dunlop D J, Özdemir Ö, Schmidt P. W. 1997. Paleomagnetism and paleothermometry of the Sydney Basin 2. Origin of an anomalously high unlocking temperature, The Journal of Geophysical Research: Solid Earth, 102(B12): 27 285–27 295.CrossRefGoogle Scholar
  9. Dunlop D J, Özdemir Ö. 2001. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, New York. p.1–573.Google Scholar
  10. Dura T, Cisternas M, Horton B P, Ely L L, Nelson A R, Wesson R L, Pilarczyk J E. 2015. Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile, Quaternary Science Reviews, 113: 93–111.CrossRefGoogle Scholar
  11. Evans M E, Heler F. 2003. Environmental Magnetism. Principles and Applications of Enviromagnetics. Academic Press, San Diego. p.1–299.Google Scholar
  12. Fujiwara T, Tamura C, Nishizawa A, Fujioka K, Kobayashi K, Iwabuchi Y. 2000. Morphology and tectonics of the Yap Trench, Marine Geophysical Researches, 21(1–2): 69–86.CrossRefGoogle Scholar
  13. Gallo N D, Cameron J, Hardy K, Fryer P, Bartlett D H, Levin L A. 2015. Submersible- and lander-observed community patterns in the Mariana and New Britain trenches: Influence of productivity and depth on epibenthic and scavenging communities, Deep Sea Research Part I: Oceanographic Research Papers, 99: 119–133.CrossRefGoogle Scholar
  14. Geissman J. 2004. Environmental magnetism: principles and applications of enviromagnetics, Eos, Transactions American Geophysical Union, 85(20): 202.CrossRefGoogle Scholar
  15. Ghafarpour A, Khormali F, Balsam W, Karimi A, Ayoubi S. 2016. Climatic interpretation of loess-paleosol sequences at Mobarakabad and Aghband, Northern Iran, Quaternary Research, 86(1): 95–109.CrossRefGoogle Scholar
  16. Guan H C, Zhu C, Zhu T X, Wu L, Li Y H. 2016. Grain size, magnetic susceptibility and geochemical characteristics of the loess in the Chaohu lake basin: Implications for the origin, palaeoclimatic change and provenance, Journal of Asian Earth Sciences, 117: 170–183.CrossRefGoogle Scholar
  17. Jamieson A J, Fujii T, Solan M, Matsumoto A K, Bagley P M, Priede I G. 2009. First findings of decapod crustacea in the hadal zone, Deep Sea Research Part I: Oceanographic Research Papers, 56(4): 641–647.CrossRefGoogle Scholar
  18. Jiang H. 2010. Dynamical mechanism and depositional responses of turbidity current sedimentation, Oil & Gas Geology, 31 (4): 428–435. (in Chinese with English abstract)Google Scholar
  19. Kars M, Musgrave R J, Kodama K, Jonas A S, Bordiga M, Ruebsam W, Mleneck-Vautravers M J, Bauersachs T. 2017. Impact of climate change on the magnetic mineral assemblage in marine sediments from Izu rear arc, NW Pacific Ocean, over the last 1 Myr, Palaeogeography, Palaeoclimatology, Palaeoecology, 480: 53–69.CrossRefGoogle Scholar
  20. Kawamura N, Kawamura K, Ishikawa N. 2008. Rock magnetic and geochemical analyses of surface sediment characteristics in deep ocean environments: A case study across the Ryukyu Trench, Earth, Planets and Space, 60(3): 179–189.CrossRefGoogle Scholar
  21. Kim W, Doh S J, Yu Y, Lee Y L. 2013. Magnetic evaluation of sediment provenance in the northern East China Sea using fuzzy c-means cluster analysis, Marine Geology, 337: 9–19.CrossRefGoogle Scholar
  22. Kirscher U, Winklhofer M, Hackl M, Bachtadse V. 2018. Detailed Jaramillo field reversals recorded in lake sediments from Armenia-Lower mantle influence on the magnetic field revisited, Earth & Planetary Science Letters, 484: 124–134.CrossRefGoogle Scholar
  23. Kitahashi T, Jenkins R G, Nomaki H, Shimanaga M, Fujikura K, Kojima, S. 2014. Effect of the 2011 Tohoku Earthquake on deep-sea meiofaunal assemblages inhabiting the landward slope of the Japan Trench, Marine Geology, 358: 128–137.CrossRefGoogle Scholar
  24. Kitajima H, Saffer D M. 2015. Consolidation state of incoming sediments to the Nankai Trough subduction zone: Implications for sediment deformation and properties, Geochemistry, Geophysics, Geosystems, 15(7): 2 821–2 839.CrossRefGoogle Scholar
  25. Li B, Wang Y, Zhong H X, Zhang J Y, Li S, Li X J, Gao H F. 2016. Magnetic properties of turbidites in the Huatung Basin and their environmental implications, Chinese Journal of Geophysics, 59(9): 3 330–3 342. (in Chinese with English abstract)Google Scholar
  26. Li B, Li S, Wang Y, Zhang J Y, Li X J, Zhong H X, Tian C J. 2015. Magnetostratigraphy of core gx149 from the West Philippine Sea, Marine Geology Frontiers, 31(8): 34–40. (in Chinese with English abstract)Google Scholar
  27. Liu J, Zhu R X, Li T G, Li A C, Li J. 2007. Sediment magnetic signature of the mid-Holocene paleoenvironmental change in the central Okinawa Trough, Marine Geology, 239(1–2): 19–31.CrossRefGoogle Scholar
  28. Liu Q, Banerjee S K, Jackson M J, Chen F H, Pan Y X, Zhu R X. 2003. An integrated study of the grain-size-dependent magnetic mineralogy of the Chinese loess/paleosol and its environmental significance, Journal of Geophysical Research, 108(B9): 2 437.CrossRefGoogle Scholar
  29. Liu S M, Zhang W G, He Q, Li D J, Liu H, Yu L Z. 2010. Magnetic properties of East China Sea shelf sediments off the Yangtze Estuary: influence of provenance and particle size, Geomorphology, 119(3–4): 212–220.CrossRefGoogle Scholar
  30. Lund S, Oppo D, Curry W. 2017. Late Quaternary paleomagnetic secular variation recorded in deep-sea sediments from the Demerara Rise, equatorial West Atlantic Ocean, Physics of the Earth & Planetary Interiors, 272: 17–26.CrossRefGoogle Scholar
  31. Maher B A, Thompson R. 1999. Quaternary Climates, Environments and Magnetism. Cambridge University Press, Cambridge. p.390.Google Scholar
  32. Meng Q Y, Li A C, Jing N, Xu Z K, Liu J G. 2006. Magnetostratigraphic and magnetic properties of marine sediments from the East Philippine Sea, Marine Geology & Quaternary Geology, 26(3): 57–63. (in Chinese with English abstract)Google Scholar
  33. Novosel I, Spence G D, Hyndman R D. 2005. Reduced magnetization produced by increased methane flux at a gas hydrate vent, Marine Geology, 216(4): 265–274.CrossRefGoogle Scholar
  34. Oldfield F. 1994. Toward the discrimination of fine-grained ferrimagnets by magnetic measurements in lake and near-shore marine sediments, Journal of Geophysical Research: Solid Earth, 99(B5): 9 045–9 050.CrossRefGoogle Scholar
  35. Pautot G, Nakamura K, Huchon P, Angelier J, Bourgois J, Fujioka K, Kanazawa T, Nakamura Y, Ogawa Y, Séguret M, Takeuchi A. 1987. Deep-sea submersible survey in the Suruga, Sagami and Japan Trenches: preliminary results of the 1985 Kaiko cruise, Leg 2, Earth and Planetary Science Letters, 83(1–4): 300–312.CrossRefGoogle Scholar
  36. Prajith A, Rao V P, Kessarkar P M. 2015. Magnetic properties of sediments in cores from the Mandovi estuary, western India: Inferences on provenance and pollution, Marine Pollution Bulletin, 99(1–2): 338–345.CrossRefGoogle Scholar
  37. Riisager P, Riisager J, Abrahamsen N, Waagstein R. 2002. New paleomagnetic pole and magnetostratigraphy of Faroe Islands flood volcanics, North Atlantic igneous province, Earth and Planetary Science Letters, 201(2): 261–276.CrossRefGoogle Scholar
  38. Roza J, Jackson B, Heaton E, Negrini R. 2016. Paleomagnetic secular variation and environmental magnetism of Holocene-age sediments from Tulare Lake, CA, Quaternary Research, 85(3): 391–398.CrossRefGoogle Scholar
  39. Sim M S, Bosak T, Ono S. 2011. Large sulfur isotope fractionation does not require disproportionation, Science, 333(6038): 74–77.CrossRefGoogle Scholar
  40. Thompson R, Oldfield F. 1986. Environmental Magnetism. Allen & Unwin Press, Sydney. p.45.CrossRefGoogle Scholar
  41. Yang J C, Cui Z, Dada O A, Yang Y M, Yu H J, Xu Y, Lin Z L, Chen Y, Tang X. 2018. Distribution and enrichment of trace metals in surface marine sediments collected by the manned submersible Jiaolong in the Yap Trench, northwest Pacific Ocean, Marine Pollution Bulletin, 135: 1 035–1 041.CrossRefGoogle Scholar
  42. Yang T, Dekkers M J, Zhang B. 2016. Seismic heating signatures in the Japan Trench subduction plate-boundary fault zone: evidence from a preliminary rock magnetic ‘geothermometer’, Geophysical Journal International, 205(1): 332–344.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yu Chen
    • 1
    • 2
    • 4
  • Jichao Yang
    • 2
    Email author
  • Olusegun A. Dada
    • 3
  • Yaomin Yang
    • 2
  • Zhen Lin
    • 2
  • Zhen Cui
    • 2
  • Yue Xu
    • 2
  • Hongjun Yu
    • 2
  • Baohua Liu
    • 2
  1. 1.Institute of Deep Sea Science and EngineeringChinese Academy of ScienceSanyaChina
  2. 2.National Deep Sea CenterMinistry of Natural Resources (MNR)QingdaoChina
  3. 3.Dept. of Marine Science & TechnologyFederal University of TechnologyAkureNigeria
  4. 4.University of Chinese Academy of ScienceBeijingChina

Personalised recommendations